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Abstract: Mapping out the complex vascular network in the brain is critical for understanding the transport of oxygen, 
nutrition, and signaling molecules. The vascular network can also provide us with clues to the relationship 
between neural activity and blood oxygen-related signals. Advanced high-throughput 3D imaging 
instruments such as the Knife-Edge Scanning Microscope (KESM) are enabling the imaging of the full 
vascular network in small animal brains (e.g., the mouse) at sub-micrometer resolution. The amount of data 
per brain (for KESM) is on the order of 2TB, thus it is a major challenge just to visualize it at full 
resolution. In this paper, we present an enhanced image processing pipeline for KESM mouse vascular 
network data set, and a parallel multi-scale tile generation system for web-based pseudo-3D rendering. The 
system allows full navigation of the data set at all resolution scales. We expect our approach to help in 
broader dissemination of large-scale, high-resolution 3D microscopy data. 

1 INTRODUCTION 

The brain is foremost a heavily wired neuronal 
network, but there is also an intricate network of 
blood vessels that serves as an essential conduit for 
oxygen, nutrition, and various signaling molecules. 
The vascular network can also provide us with clues 
to the relationship between neural activity and blood 
oxygen level dependent (BOLD) signals in 
functional magnetic resonance imaging (fMRI) or 
near infrared spectroscopy (NIRS) signals. Thus, 
mapping out the full vascular network in the brain is 
an important challenge (Mayerich, Kwon, Sung, 
Abbott, Keyser, and Choe, 2011). 

Advanced high-throughput 3D imaging 
instruments such as the Knife-Edge Scanning 
Microscope (KESM) enable the imaging of the full 
vascular network in small animal brains (e.g., the 
mouse) at sub-micrometer resolution.  See Figure 1 
for more details. This is sufficient to resolve the 
smallest capillaries (Mayerich et al., 2011).  

The amount of data produced by KESM imaging 
of the mouse brain is on the order of 2TB, thus it is a 
major challenge just to visualize it at full resolution. 

To address this challenge, the KESM Brain Atlas 
(KESMBA)      was     developed     (Chung,    Sung, 

 

Figure 1: Knife-Edge Scanning Microscope (KESM). (1) 
high-speed line-scan camera, (2) microscope objective, (3) 
diamond knife assembly and light collimator, (4) specimen 
tank (5) three-axis precision stage, (6) white-light 
microscope illuminator, (7) water pump for the removal of 
sectioned tissue, (8) PC for stage control and image 
acquisition, (9) granite base, and (10) granite bridge. 

Mayerich, Kwon, Miller, Huffman, Abbott, Keyser, 
and Choe, 2011). This system is built on the Google 
Maps API, using multi-scale tiles with pseudo-3D 
rendering through transparent overlays. Figure 2 
shows a screenshot of KESMBA. 
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Figure 2: A screenshot of KESM Brain Atlas (KESMBA) 
(Chung et al., 2011). 

However, the tile generation requires time-
consuming manual calibration and the time required 
to download a single visualization is significant (~45 
to 55 seconds/page for 20 overlays), requiring a lot 
of patience on the part of the user. 

To address these two issues, we present an 
automated image processing pipeline for KESM 
mouse vascular images and a parallel multi-scale tile 
generation system for web-based pseudo-3D 
rendering that includes pre-overlaid tiles. The 
system, built on the OpenLayers API, allows full 
navigation and multi-scale viewing of the whole 
mouse brain data set at maximum resolution using a 
conventional web browser. 

2 ENHANCED IMAGE 
PROCESSING PIPELINE 

KESM employs physical sectioning imaging where 
thin slices of tissue are concurrently cut and imaged 
(Mayerich, Abbott, and McCormick, 2008). These 
slices are then re-assembled in order to produce the 
final volumetric data set (Kwon, Mayerich, Choe, 
and McCormick, 2008). In this section, we describe 
an enhanced image processing pipeline that 
performs the following tasks: 
 The Tissue Area Detector detects the portion 

of the raw image that contains actual tissue 
data. 

 The Tissue Area Offset Corrector identifies 
and corrects errors in the detected tissue area. 

 The Cropper crops an image based on the 
corrected area information. 

 The Relighter removes lighting artifacts and 
normalizes the inter-image intensity level. 

 The Merger merges multi-column stacks into 
a large, single column image 

 The Overlay Composer generates pre-
overlaid images with a given number of 
images (e.g., an overlay of twenty 1μm-thick 
images will give a visualization a 20μm-thick 
slab) stack. 

 The Tiler generates tile images for the web-
based map service 

In this paper, we provide details for the Tissue 
Area Offset Corrector and the Overlay Composer. 
The other phases of the pipeline have been described 
previously (Kwon, Mayerich, and Choe, 2011). 

Automating the image processing steps is critical 
for generating brain atlases since the number of 
images is extremely large (e.g. 32,792 images in a 
whole mouse brain KESM data set). Previously, we 
automated key image processing steps including 
noise removal, image intensity normalization, and 
tissue area cropping (Kwon et al., 2008) (Kwon et 
al., 2011). However, the automation of several 
important steps remains, including correction of 
tissue area detection results. In addition, we 
demonstrate that pre-overlaying of images in the 
image stack is necessary to improve page load 
performance, and must also be automated. 

2.1 Tissue Area Offset Corrector  

The image processing pipeline starts from the Tissue 
Area Detector. A raw KESM image includes blank 
regions flanking the region that contains actual 
tissue data. Due to the physical sectioning process, 
the precise position of the tissue region in each 
image can show some variation due to repositioning 
of the knife or the objective during extended 
cutting/imaging sessions. We previously describe an 
automatic method for detecting the tissue region 
based on the right-most edge of the tissue (Kwon et 
al., 2011). However some images do not have a clear 
boundary due to uneven lighting across the knife 
edge. Failure to find a proper tissue boundary leads 
to incorrect cropping of the images, which are 
difficult to manually correct. Such errors impede 
proper reconstruction of 3D geometry in subsequent 
stages. However, we find that errors can be detected 
by observing the computed tissue region in adjacent 
images of the image stack. The sum of the difference 
between tissue area offsets in neighboring images is 
calculated. A sudden spike indicates an improperly 
detected tissue area offset. The summation continues 
until it reaches a certain threshold C: 
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where Sn is the sum, ∆xi = |x(i) − x(i − 1)|, and 
x(i) is the tissue area offset of image i. The tissue 
area offset x(i) is flagged as a spike (error) when Sn 
is less than the minimal chunk size R. A chunk is a 
stack of images that are obtained without any 
knife/objective repositioning, thus there should be 
no variation in x(i). The x(i) difference between two 
chunks is expected to be high. Once x(i) is 
determined to be a spike, rather than the start of a 
new chuck, linear interpolation is applied to the 
spike. x(i) will be replaced with x(i − 1). We used C 
= 10 and R = 15 in our case for (1). A simple spike 
can be removed by the approach described above. 
Yet several consecutive and irregular spikes cannot 
be removed in a single pass: One more round was 
required. 

The summation of ∆xi continues until it reaches 
the maximum number of consecutive spikes (5 in 
our case) for the same data set. If the sum of 
differences is less than the mini- mum step size for a 
new chunk, the set of offsets [x(i), x(i + 1), · · · ] are 
labelled as spikes. Figure 3 shows initial tissue area 
offsets compared to the corrected offsets. 

 

Figure 3: Correction of Improperly Detected Tissue 
Region. The red dashed lines show the original detection 
results. The blue solid lines indicate corrected results.  

2.2 Overlay Composer 

KESM produces images that represent a 1 mm-thick 
tissue section. This allows an unambiguous 
geometric reconstruction of the vascular network 
(i.e., there are no crossing or overlapping vessel 
segments in the image). Refer to Figure 4. 

However, presenting one image at a time does 
not provide insights into the structural organization 
of  the  vascular  network  (Figure 5 (a)). Overlaying 

 

Figure 4: Series of Thinly Sliced Images. Structural 
Organization is hardly seen from a few series of images. 

multiple images in the depth direction can overcome 
this limitation (Figure 5 (b)). In the current 
KESMBA, images with transparent background are 
downloaded on-the-fly and composed into an 
overlay by the web browser. However, the download 
time and overlay computation can be time-
consuming. Furthermore, the addition of the 
required alpha channel incurs an extra overhead. 
Pre-computing the overlays is an effective 
alternative, and in this section we propose an 
efficient method that does not require this additional 
overhead. We first use (2) to pre-compute multiple 
overlays in an image stack: 
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where On(x, y) is an intermediate output image 
after composing the n-th and (n + 1)-th image, In(x, 
y) is the n-th input image, and the index n = 0 (N - 1) 
where N is the number of overlay images. The 
attenuation factor αn is defined in (3) 
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where n is the depth index, N is the maximum 
depth, q is the order of the pixel intensity decrease 
rate, s is the initial value, and r is the attenuation 
rate. The values of the parameters were s = 6, q = 2, 
and r = 0.1. Figure 5 (b) shows an example of an 
overlay composed of 40 images created using the 
above method. 
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(a) 

 
(b) 

Figure 5: Transparent Overlay with Distance Attenuation. 
(a) A single KESM image (1 µm thickness). (b) An 
overlay of 40 KESM images (40 µm thickness), showing a 
local visualization of the vascular network. Objects in the 
foreground are brighter and those toward the background 
darker (distance attenuation). 

3 PARALLELIZATION OF 
OVERLAY COMPOSER 

Pre-overlaying images can greatly help reduce page 
load time for the KESM Brain Atlas, but preparing 
the pre-overlaid images (and map tiles) can be very 
time consuming. We need to process O(104) very 
large images (12,000×9,600) and access more than 
100 million pixels with each operation outlined in 

the previous section. On average, 1,203ms was 
needed to read a single image from a hard drive 
directly connected via USB 2.0. It took an average 
10,046ms to compose two images to generate an 
intermediate overlay. The total time to read and 
compose 40 images to produce an intensity 
attenuation image was on average 
1,203×40+10,046×39 = 439,914ms. The total 
number of images of the whole mouse brain 
vasculature data set is 9,628, thus it would take 
1,177 hours (49 days) to complete the image 
composition on a single-core CPU. 

Parallelization is a viable option in this case. We 
used commodity hardware to parallelize the pre-
computation of overlays, without explicit parallel 
programming. The problems that need to be 
addressed are as follows: (a) Convenient 
deployment of image processing modules that are 
being actively developed (i.e., often updated) to all 
the workstations. (b) The ability to access the source 
data (the KESM image stack) and save the processed 
data. (c) Speed loss due to conflicts as more 
processes and workstations simultaneously access 
shared data resources. 

3.1 System Design 

To test performance gain due to parallelization, we 
designed a system utilizing node-level parallelism 
that does not require process-level or thread-level 
parallel programming. We built a network of 
connected workstations that share a Network 
Attached Storage (NAS). We made shared folders in 
the NAS and mapped them to network drives on the 
workstations so that image processing executables 
on the workstations can easily access the data sets. 
For data storage, DiskStation DS212j from Synology 
was used along with two hard disk drives; 2TB and 
3TB. Five workstations were involved in the 
experiments. Each workstation had Intel Core i7 920 
2.67GHz CPU and 6 GB of triple-channel PC10666 
(1,333 MHz) RAM. There are two potential issues 
with this setup: (a) concurrent access to storage may 
degrade reading and writing performance, and (b) 
running multiple concurrent processes on each 
workstation can further complicate issue. We test 
these factors in the following section. 

3.2 System Performance 

Each process performs overlay composition. Initially, 
we tested the performance with a single process on a 
workstation directly attached to the NAS. We then 
increased the number of processes to 5, 10, ..., 30, 
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and measured the performance. The number of 
workstations was also increased, from 1 to 5. The 
performance is measured by the total run time T, 
defined in (4).  

,
)(

wp

MNtt
T cr







  (4)

Where tr is the average time to read an image, tc 
is the average time to compose an overlay of two 
images, N is the total number of layers (=40), M is 
the total number of images to be processed (=9,628), 
and p is the total number of processes. γ and β are 
time increment ratios in reading and composing 
images respectively as p increases, and w is the 
number of involved workstations. The overall 
experimental setup is described in Figure 6. Graphs 
in Figure 7 show the performance results. 

 

Figure 6: Overall Experimental Setup. 

3.2.1 Single Workstation + USB 

In this experiment, we varied the number of 
processes on a single workstation with the storage 
attached via USB. The sum of read time tr (o) and 
overlay composition time tc (×) per process 
increased by about three times, but the number of 
processors p was increased to 30, so the net 
performance gain is 10 times (in terms of reduction 
in T: +). We can conclude that using multiple 
processes is beneficial when the storage is local and 
concurrent access is enabled. 

3.2.2 Single Workstation + NAS 

We also investigated the case with a single 
workstation with a NAS. The results show that read 
time tr(o) is decreased to the order of time required 
to produce the overlay tc (×) when the NAS was 
accessed in parallel. Total processing time T (+) per 
process was increased six-fold, but the number of 
processes p increased to 30 so the net performance 
gain is 5 times (faster). With max p, the total 
processing can be done 10 times faster compared to 
the case where a single process is used. 
 

3.2.3 Multiple Workstations (30 Processes) 

Here we used up to 3 workstations running 30 
processes each. The per workstation computation 
time T went up slightly less than two-fold, compared 
to the three-fold increase in the number of 
workstations w, thus the net reduction in computing 
time was 33%. 

3.2.3 Multiple Workstations (5 Processes) 

Here we used up to 5 workstations with fewer 
processes per workstation (=5). In this case, the per-
workstation computing time went up four-fold, 
while the number of workstations w increases to five, 
distributing the load, thus it lead to a 28% reduction 
in computing time. 

 
(a) 

 
(b) 

Figure 7: Processing Time. The wall-clock time for 
processing a 40-image overlay is shown for different 
server/process configurations. (a) Single workstation, 
number of process varied, USB-attached storage. (b) 
Single workstation, number of process varied, network-
attached storage. (c) Multiple workstations, 30 processes 
per workstation, network-attached storage. (d) Multiple 
workstations, 5 processes per workstation, network-
attached storage. The results show consistent performance 
gain, to a limit, as processes and nodes are added. 
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(c) 

 
(d) 

Figure 7: Processing Time. The wall-clock time for 
processing a 40-image overlay is shown for different 
server/process configurations. (a) Single workstation, 
number of process varied, USB-attached storage. (b) 
Single workstation, number of process varied, network-
attached storage. (c) Multiple workstations, 30 processes 
per workstation, network-attached storage. (d) Multiple 
workstations, 5 processes per workstation, network-
attached storage. The results show consistent performance 
gain, to a limit, as processes and nodes are added. (cont.) 

4 ENHANCED KESM BRAIN 
ATLAS 

To display and navigate the prepared multi-scale 
image tiles on a web browser we used OpenLayers, 
an open source web service platform. OpenLayers is 
an open map API that can display map tiles and 
markers. (Refer to http: //openlayers.org for more 
details.) The output of our image processing pipeline 
is a set of pre-overlaid images that is first converted 
into map tile images for OpenLayers.  

4.1 Make Map Tiles with GDAL2Tiles 

We used GDAL2Tiles to generate map tile images 
for OpenLayers. GDAL (Geospatial Data 

Abstraction Layer) (http://www.gdal.org) includes 
GDAL2Tiles that can generate map tiles for 
OpenLayers, Google Maps, Google Earth, and 
similar web maps. GDAL can be installed from 
OSGeo4W for Windows. 
(http://trac.osgeo.org/osgeo4w/). The following 
script can be used to create map image tiles from a 
single large image.  

 
gdal gdal2tiles.py -p raster -z 0-6 -w 
none filename.jpg 

 

We created a script to process all image files in a 
folder as follows: 

 
forfiles /m *.jpg /c "cmd /c gdal2tiles 
-p raster -z 0-6 -w none @file" 

 

Screenshots of the enhanced KESMBA is shown 
in Figure 8. All source code is accessible at 
https://github.com/jrkwon/KESMSuite. 

5 CONCLUSIONS 

In this paper, we presented an enhanced image 
processing pipeline for Knife-Edge Scanning 
Microscope mouse brain vasculature data. The 
pipeline included a Tissue Area Offset Corrector and 
Overlay Composer. We also proposed a 
parallelization system design and demonstrated its 
effectiveness. Finally, we built an OpenLayers-based 
web atlas based on the resulting images and tiles. 
Our approach is expected to be broadly applicable to 
large-scale microscopy data dissemination. 

 
(a) 

Figure 8: Enhanced OpenLayers-Based KESM Brain Atlas 
Screenshots of the enhanced KESMBA is shown. The 
mouse brain vasculature data set is shown at different 
scales. 
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(b) 

 
(c) 

 
(d) 

Figure 8: Enhanced OpenLayers-Based KESM Brain Atlas 
Screenshots of the enhanced KESMBA is shown. The 
mouse brain vasculature data set is shown at different 
scales. (cont.) 
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