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Abstract. With high-throughput and high-resolution imaging technolo-
gies such as Knife-Edge Scanning Microscopy (KESM), it is possible
to acquire teravoxel sized three-dimensional neuronal and microvascular
images of the whole mouse brain with sub-micrometer resolution. It is
imperative to be able to visualize and share these teravoxel volumes effi-
ciently, to facilitate group efforts from research communities. However,
due to the immense size of the data sets, sharing and managing them have
always been a big challenge. This paper describes an image processing
pipeline for a real-time 3D visualization framework that allows research
groups to work in collaboration. The proposed work can visualize and
share terabyte-sized three-dimensional images for study and analysis of
mammalian brain morphology. Although the image processing pipeline
used a KESM data set to show the feasibility of it, the proposed pipeline
can also be used for other larger data sets. We believe that this novel
framework for Web-based real-time 3D visualization can facilitate data
sharing of teravoxel volumes across research communities.
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1 Introduction

Modern high-throughput and high-resolution 3D bioimaging technologies such as
Knife-Edge Scanning Microscopy (KESM) [1] have enabled imaging and recon-
struction of the whole mouse brain architecture at sub-micrometer resolution.
KESM performs simultaneous serial sectioning and imaging of the whole mouse
brain and generates data sets that include: neuronal circuits (Golgi stained),
some distribution (Nissl stained), and vascular networks (India ink stained).
Fig. 1 shows a recent implementation of the microscope based on KESM. The
data sets are multi-scaled images, ranging from sub-cellular (< 1µm) to the
whole organ scale (≈1 cm). The KESM scans a 1 cm3 tissue block in approxi-
mately 50 h at a resolution of 0.6µm×0.7µm×1.0µm. It then stores the scanned
biological tissue data digitally in the form of stacked 2D images, the size for
which is ≈2 TB. Then, through a processing pipeline, these stacked 2D images
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are converted into volumes composed of terabytes of voxels, referred as Teravoxel
Volumes. Due to immense size and multi-scale nature of the data set, efficiently
visualizing and sharing them among research communities for analytical studies
have always imposed challenges on researchers.

Tissue Sample

Line scan Camera

Fig. 1. The Knife-Edge Scanning Microscope. The Line-Scan Camera, Knife Assembly,
Tissue Sample and Specimen Holder.

3D visualization helps users to understand the morphology of the biological
organ. At the same time, efficiently sharing the data across research communi-
ties is also important for review and feedback. Terafly [2,3] is an open-source
Vaa3D [4] plug-in to support 3D visualization of immensely sized biomedical
images. Although the tool is efficient in visualizing terabyte-scale images, the
plug-in toolkit is a stand-alone software package that is required to be installed
in local computers. Also teravoxel data must reside in the same computer or
local network resources. This hinders the research communities to work in col-
laboration with data sets. On the other hand, there have been efforts to develop
web-based applications to visualize neuronal circuits and microvascular data sets
(e.g. The Mouse Atlas Project, Allen Brain Atlas [5] and Knife-Edge Scanning
Microscopy Brain Atlas (KESMBA) [6]). These applications allow centralization
of data sets and facilitate sharing of visualization results. Yet they are not effi-
cient real-time 3D visualization methods. For instance, Allen Brain Atlas based
on the Mouse Atlas Project does not support high-resolution data visualization
(details will be in the next section). KESMBA provides pseudo 3D visualization
through stacking of semitransparent image slices. The maximum number of lay-
ers are 30. It takes time for KESMBA load all the layers before it displays. Also
it is just layered and attenuated 2D image stacks.

In this paper, we propose an image processing pipeline for Web-based real-
time framework for 3D visualization of teravoxel volumes, such as the microvas-
cular data set obtained by the KESM. This pipeline is capable of visualizing
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both terabyte volumes in real-time, since the proposed framework is Web-based,
visualization is entirely independent of the underlying operating system.

2 Related Work

Mackenzie Graham developed a probabilistic atlas of the adult and developing
C57BL/6J mouse. The MAP consists of not only data from Magnetic Resonance
Microscopy (MRM) and histological atlases, but also a suite of tools for image
processing, volume registration, volume browsing, and annotation.

The Allen Brain Atlas [7] contains detailed gene expression maps for ≈20,000
genes in the C57BL/6J mouse [5]. A semi-automated procedure was used to
conduct in situ hybridization and data acquisition on 25µm thick sections (z-
axis) of the mouse brain. The x-y axis resolution of the images ranges from
0.95µm to 8µm.

The Mouse Brain Library (MBL) is developing methods to construct atlases
from celloidin-embedded tissue to guide registration of MBL data into a standard
coordinate system, by segmenting each brain in its collection into 1,200 standard
anatomical structures at a resolution of 36µm [8].

Brain Maps.org is an internet-enabled, high-resolution brain map [9]. The
map contains over 10 million megapixels (35 terabytes) of scanned data, at a
typical resolution of ≈ 0.46µm/pixel (in the x-y plane). The atlas provides
an intuitive Web-based interface for easy and bandwidth efficient navigation,
through the use of a series of sub-sampled (zoomed out) views of the data sets,
similar to the Google Maps interface.

The Whole-Brain Catalog (WBC) is a 3D virtual environment for exploring
multiple sources of brain data (including mouse brain data), e.g., Cell Centered
Database (CCDB), Neuroscience Information Framework (NIF), and the Allen
Brain Atlas (see above). WBC has native support for registering to the Waxholm
Space, a rodent standard atlas space [10].

The Knife-Edge Scanning Microscopy Brain Atlas (KESMBA) [6] framework
has been designed and implemented to allow the widest dissemination of KESM
mouse brain circuit data by overlaying transparent layers of images with distance
attenuation. Overlaying image stacks containing two intertwining objects to get
minimum intensity projection results in the loss of 3D information. Although,
interleaving each image with semi-opaque blank images brings out the 3D infor-
mation. Still, KESMBA provides a pseudo 3D visualization as it stacks the
semitransparent image slices for not more than 30 layers at once.

Terafly is a Vaa3D plugin [3] for real-time 3D visualization of terabyte
sized volumetric images. Vaa3D, which is an open-source, cross-platform sys-
tem, extended its powerful 3D visualization and analysis capabilities to images
of potentially unlimited size with this plugin. When used with large volumet-
ric images up to 2.5 Terabyte in size, Vaa3D-TeraFly exhibited real-time (sub-
second) performance that consistently scaled on image size. TeraFly can gen-
erate a 3D region of interest (ROI) by subsequent fetching and rendering of
image data at higher resolutions, thus enabling fast (sub-second) visualization

http://brainmaps.org
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of Terabyte-size images. It exhibits real-time performance regardless of image
size when used on both high and medium-end computers. However, the perfor-
mance is constrained on a local computer and cannot be directly used to share
3D visualization results of terabyte-sized data sets among research groups.

3 Background

The mouse brain data set that we used for our experiment is from a C57/BL6
mouse specimen. It is a India Ink stained vascular network data set, labeled with
a mouse brain id: MOU1 BRA IND 2008 04.

The Insight Segmentation and Registration Toolkit (ITK) is an open-source
software toolkit, implemented in C++, that provides algorithms for perform-
ing registration and segmentation to multidimensional data. Segmentation is
the process of identifying and classifying data found in a digitally sampled rep-
resentation. Registration is the task of aligning or developing correspondences
between data. ITK is widely used for medical image processing. However, It does
not include methods for displaying images, nor a development environment or
an end user application for exploring the implemented algorithms.

The Visualization Toolkit (VTK) is an open-source, freely available software
system for scientific visualization, information visualization, 3D computer graph-
ics, modeling, image processing, and volume rendering. VTK is implemented as a
C++ toolkit, requiring users to build applications by combining various objects
into an application.

The X Toolkit (XTK) is an emerging technology, including webGL and
increased performance of JavaScript engines, which allows both 2D and 3D image
manipulation. XTK [11] and BrainBrowser [12] are two popular tools that allow
visualization and interaction with both 2D images (texture files .png, .jpg) and
3D volumes. XTK is available on GitHub and can be used to visualize a wide
spectrum of physiological phenomena ranging from white matter cortical con-
nections, aneurysm characteristics, and knee morphologies. XTK also supports
a number of common neuroimaging formats such as compressed and uncom-
pressed formats of DICOM files (.nrrd, .nii, .nii.gz, .mgz, .dcm, etc.) and files
from higher level MR processing (.trk, .stl, .fsm., .label, etc.) commonly used in
image analysis research. Several implementations of XTK include the AneuRisk
Web repository [13] and SliceDrop.org. The LONI group (formerly of UCLA,
now of UCSC) has developed an extension of SliceDrop that further supports
drawing ROIs directly within the XTK framework. A pediatric brain atlas, built
using the XTK visualization platform, further demonstrates the power of this
framework. Another notable Web-based viewer is Papaya, based on a similarly
functioned Java client.

4 Methods and Implementations

The complete implementation is broadly divided into two categories: first: Cre-
ation of Multidimensional Dataset that includes: (i) Processing of 2D stacked

http://slicedrop.org
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images and (ii) Unit-Volume creation stages. Second: Implementation of the
Web-Based 3D Visualization Framework that again comprises of two stages: (i)
Web-Based GUI application and (ii) ROI selection algorithm. The first category
involves a development of the image processing pipeline in Qt framework using
toolkits: ITK and VTK. The second category involves the development of the
web application using XTK. Let’s go into details about each stage.

4.1 Processing of 2D Stacked Images

This stage involves processing of 2D images initially received from KESM, and
is divided into two sub-stages:

Stitching of the Columns. After the serial sectioning performed in KESM,
the raw data set of 2D images is stored in the form of stacks and columns. The
tissue area from each raw image is automatically cropped and saved, so each
column contains images of only tissue area from the mouse brain. The images in
each column are further processed; the noise is removed, and image intensity is
normalized for each cropped image. Then the images at the same z coordinate
are stitched across the columns in an image sheet. ITK filters are utilized to
perform the stitching algorithm. Whereas, we implemented the image intensity
normalization algorithm previously proposed for KESM image stacks [14]. The
outcome of this process is a single stack of 2D images with clean prominent
tissue areas. For this experiment, the raw images we had were initially divided
into four columns or four stacks of images. The resolution of each image in each
column stack was 2400×12000. After the stitching, we finally got a stack of 9626
images each of resolution 9600 × 12000.

Sub-sampling of Image Stacks. To create multi-resolution image stacks, we
need to sub-sample the original 2D image stack obtained after stitching. We use
ITK filters to create output image stacks, which are half the resolution of the
input image stack. We shrink the 2D images in the x -y plane, and choose to keep
alternate files from the original stack in the z direction. So, if the resolution of
the image stack created after stitching is A, the sub-sampled image stack will
be of resolution A/2. This method is used to create a series of image stacks of
resolution: A, A/2, A/4, A/8, A/16, A/32. For example, the original stack with
9626 images each of resolution 9600 × 12000 when subsampled, creates a stack
with 4813 images each of resolution 4800 × 6000. We continuously subsample
the image stacks until an image resolution lesser than 512 × 512 is achieved.
Finally, we end up creating image stacks of resolution: 9600×12000, 4800×6000,
2400 × 3000, 1200 × 1500, 600 × 750, 300 × 375. The subsampled image stacks
stored in directories are named in a way that they provide information about
their resolution and the mouse brain id.

4.2 Unit-Volume Creation

This stage creates 3D volumes from the 2D image stacks created in the previous
step, and is also composed of two sub stages:
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Cropping of Unit-Volume Image Stacks. In this process, we crop out stacks
of 256 images each of resolution 256×256 from an original image stack, which will
be used later to create unit-volumes. 2D images of resolution 256×256, referenced
as unit-images are cropped and extracted from each image of an input image
stack. Each unit-image is labeled with its unit-x and unit-y coordinates. Where,
unit-x and unit-y mark 256 pixels in x and y direction. Each image in an input
image stack points to a coordinate in the z direction, which is used to name the
directory storing all the unit-images for that image. Now, these directories save
the unit-images temporarily, until they are moved to their respective unit-volume
image stack directories (explained in further sections). Every 256 images in the
input image stack marks a unit in z direction. Starting from the first image in
the input image stack, a set of 256 images are taken in sequence, to create 256
temporary directories. These 256 temporary directories will create unit-volume
image stacks of the same unit-z coordinate. This process is repeated for all the
images in the input image stack, taken in a set of 256 files at once.

STL Mesh Creation. In this stage, we convert the unit-volume image stacks
into volumes; create 3D STL (Standard Tessellation) meshes which can be loaded
easily to the Web-based framework. We choose the volume output format as
STL because it is supported by the XTK APIs. Using ITK classes, we create
3D volumetric images from the unit-volume image stacks. These 3D volumetric
images generate unit-volumes, and are expected to be isotropic in all the three
directions. Iso-surfaces for each unit-volume are found using the Marching Cube
algorithm in VTK, and are then saved as a 3D mesh in an STL file format. A
STL Mesh file is labeled with the name of its unit-volume image stack directory.
So, for the highest resolution image stack, we create Meshes: Vol 0 0 0.stl,
Vol 0 1 0.stl, . . . Vol 36 45 37.stl. This process is repeated for all the sub-
sampled unit-volume image stacks, resulting in a set of multi-resolution unit-
volume meshes. Iso-Surfaces are the distribution of scalar data in a volumetric
image. Marching Cube algorithm uses patterned cubes or isosurfaces to approx-
imate contours in a volumetric image. VTK supports the marching cubes algo-
rithm with VtkMarchingCubes class, which requires a volumetric image input as
a VTK data object, and creates an output in VTK poly data format. We can
specify the threshold value and the number of contours while using VtkMarch-
ingCubes, to generate the 3D surface of the object.

The Image Processing pipeline was implemented using a controller-worker
model. Each stage explained above has its own controller and worker. A worker is
the one which make changes; execute functions utilizing ITK and VTK libraries.
Whereas, a controller is the one which decides what files are to be passed to the
worker and even controls the worker execution. This model has been applied
to avoid time delays, generally caused due to looping over the same task. Here,
each time a task is to be executed, the controller code simply calls the worker
application which performs that task. Since all the controllers are written in Qt
and do not use any ITK/VTK libraries, the complete design is a cross-platform
solution.
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4.3 Web-Based Graphical User Interface Design

At this stage, we design the Web-based application for managing visualization
and interaction with the 3D meshes. We utilized the X Toolkit (XTK): WebGL
for Scientific Visualization [15] to make the Web-based 3D visualization frame-
work for teravoxel volumes. A simple Web server is implemented by using Node.js
[16]. Then through a custom javascript code, we designed the graphical user
interface to control the whole functionality of the Web application. The graph-
ical user interface (GUI) is designed using a javascript controller library called
dat.GUI [17]. The graphical user interface is used to display the details of the
volume loaded: x,y,z unit coordinates and the resolution.

4.4 STL Loading and ROI Selection

STL Loading. XTK supports the STL file format and for visualization, it
simply requires dropping of the STL meshes on the website. X toolkit provides
a set of easy-to-use APIs for visualizing scientific data on the Web. We utilized
the X.Mesh() API to create mesh objects, for loading the unit-volume STL
meshes created earlier. At an instance, an STL mesh of unit-volume i.e. of 2563

dimension is loaded, according to the user scroll input depending upon their
region-of-interest and angle-of-perspective.

ROI Selection Algorithm. This algorithm resembles the one used in the
Vaa3D plugin Terafly or the Google Earth application. The volume of the small-
est resolution i.e. 300×375×300 is displayed at first. This Mesh shows the whole
structure of the mouse brain architecture. Further, according to the zoom in/out
levels and user scroll input, the switching between the resolution occurs. When
that happens, the region-of-interest (ROI) in the next resolution is selected and
displayed on the Web-server.

5 Results

The stitching operation is performed using a Image-Stitcher Controller, which
stores the 9,626 stitched images in the directory with label indicating the
mouse brain id and resolution i.e. MOU1 BRA IND 2008 04 9600x12000. The Sub-
Sampling Controller creates the following directories as shown in Table 1.

All these directories cumulatively occupy a hard disk space of ≈70 GB. The
Volume-Maker Controller creates the following number of unit-volume image
stacks:

All these unit-volume image stacks cumulatively occupy a hard disk space of
≈94 GB. Since, the iso-surfaces are only generated for volumteric images with
tissue areas. Thus, the number of STL Meshes created is not always equal to
the number of unit-volume image stacks. A 3D-Model-Maker Controller converts
the volumetric images into STL-Meshes and the output is displayed in Table 2
below.
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Table 1. The numbers of files in sub-sample directories

Subsampled directories created No. of files

MOU1 BRA IND 2008 04 4800x6000 4813

MOU1 BRA IND 2008 04 2400x3000 2407

MOU1 BRA IND 2008 04 1200x1500 1204

MOU1 BRA IND 2008 04 600x750 602

MOU1 BRA IND 2008 04 300x375 301

Table 2. The numbers of images and meshes for each of resolutions

Resolution of source images Unit-volume images STL Meshes

9600 × 12000 57944 49884

4800 × 6000 7866 7055

2400 × 3000 990 904

1200 × 1500 80 74

600 × 750 8 8

300 × 375 1 1

Iso-surface value: 180

(a)

Iso-surface value: 160 Iso-surface value: 150

Iso-surface value: 130Iso-surface value: 120Iso-surface value: 100

(b) (c)

(d)(e)(f)

Fig. 2. The STL Meshes loaded according to the ROI selected by the user. (a) unit-
volume loaded with unit x-y-z coordinates as 0,0,0 and resolution 300 × 375, (b) unit-
volume loaded with unit x-y-z coordinates as 1,1,1 and resolution 600 × 750, (c) unit-
volume loaded with unit x-y-z coordinates as 2,4,2 and resolution 1200 × 1500, (d)
unit-volume loaded with unit x-y-z coordinates as 5,8,5 and resolution 2400 × 3000,
(e) unit-volume loaded with unit x-y-z coordinates as 11,17,11 and resolution 4800 ×
6000, and (f) unit-volume loaded with unit x-y-z coordinates as 22,34,22 and resolution
9600 × 12000.
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All the STL’s cumulatively occupy a hard disk space of ≈1 TB. A minimum of
8 GB RAM is required for creating the complete data set on a 64-bit computer
architecture. It was observed that the programs written to prepare the data
set work faster with such a system configuration. The framework automatically
loads the smallest resolution volume when first launched. The resolution and
unit x-y-z coordinates can then be selected to load the other higher resolution
volume Meshes (See Fig. 2). It is observed that without caching, the time taken
to display the data is about 10–15 s.

6 Conclusion and Future Work

To be able to explore the biological structure and understand the morphology,
efficient 3D visualization for biomedical data sets is crucial. However, it is also
important that we should be able to share the data set and visualization result
with researchers working in imaging laboratories across the globe. This helps
in working in collaboration for analysis studies and review. The above results
demonstrate that this framework is potentially efficient in visualizing multi-
resolution volumes and also scaling to larger images. The framework explained
here exhibits real-time properties and caters both the demand for efficient visual-
ization and sharing of visualization results. We expect the proposed Web-based
real-time 3D visualization framework to enhance the accessibility of teravoxel
volumes and help research communities to use the data sets.

We used KESM vascular data set for our experiment, but this approach is
expected to support any data set of any size. The current GUI implementation
requires a user to select the resolution and the unit-x, unit-y and unit-z coordi-
nates for visualizing a particular unit-volume of interest. But, we are working to
extend its capabilities, to automate this process of picking up the STL meshes,
according to the user’s mouse scroll input. After which, a user will be able
to explore the whole-mouse-brain-structure in an easy and more natural way.
The implementation would require a user to select the region-of-interest (ROI)
by double-clicking/scrolling on a portion of the volume they want to visualize
in detail. The double-click/scroll operation would then load the higher resolu-
tion STL mesh for the same ROI, according to the manipulated coordinates.
Zoom in/out will help to explore the volume in one resolution but double click-
ing/scrolling in a particular region will load a higher resolution volume for the
same ROI. The double click operation will work in both directions; for switching
to higher resolutions as well as lower resolutions. The GUI panel would display
the result of the visualization which includes resolution, unit coordinates, the
number of branches, thickness, and other details.
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