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Abstract— The anatomical structure of the brain microvascular
system plays an important role in understanding the function
of chemical transport within the brain. However, there have
been no imaging techniques that provide the high-resolution and
high-throughput data acquisition required to image complete
microvascular networks. In this paper, we use a new high-
throughput technique to image the entire mouse brain vascular
system at a sample rate high enough to resolve all components
of the vascular system. We describe the imaging and segmen-
tation methods used to construct a structural model of complex
microvascular networks. This model is then used to extract high-
resolution anatomical statistics while providing a framework for
further study.

I. INTRODUCTION

Complete models of vascular structure are important for
understanding several medical conditions. Brain microvascula-
ture has been shown to play an important role in disorders and
neurodegenerative diseases including Alzheimer’s Disease,
Multiple Sclerosis, and Parkinson’s Disease [1]. Capillaries,
the basic components of the microvascular system, perform
important nutritional functions and may also affect the neural
response [2]. However, very little is known about the structure
of microvascular networks. This is due both to their small size
and extraordinary complexity.

Microvascular networks have several properties that make
them difficult to both image and model. The capillaries are
≈ 5µm in diameter, requiring high-resolution imaging for
reconstruction. Despite their small diameter, connected com-
ponents in a capillary network span several cubic millimeters
of tissue. Creating complete data sets representing microvas-
cular networks requires imaging entire organs at a microscopic
resolution. Advanced imaging methods and segmentation tech-
niques are required in order to cope with these large and
complex data sets.

In this paper, we describe a framework for creating high-
resolution microvascular models. First, we create a complete
image of the mouse brain vascular system in high-resolution
using new microscopy techniques. In Section III, we discuss
tracking methods used to find the medial axis of capillaries that
make up each network. In Section IV, we describe a method
for combining topological information with an incomplete
or damaged isosurface in order to create a model useful
for statistical analysis and simulation. In Section V, we use
this model to perform a high-resolution statistical analysis of
several important features of the mouse microvascular system.
This paper describes two major contributions. First of all, we
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create a whole-brain image of the mouse vascular system at the
microscopic scale, as well as an image of the somatosensory
cortex containing both vascular and cellular information (Sec.
II). We also develop a technique for using mutual information
from both the network skeleton and isosurface to create
compute radii for high-resolution structural models of the
microvascular network.

II. IMAGING

Several three-dimensional techniques currently exist for
imaging the vascular system at the macroscopic level. Mag-
netic Resonance Imaging (MRI) and Computed Tomography
(CT) are commonly used for imaging vascular structure.
Although these methods are non-invasive, the sampling res-
olution is insufficient for reconstructing a capillary network.

Micro-CT is often used for imaging capillary networks [3],
however the resolution is generally limited to 8µm − 20µm,
while the average microvessel diameter in many mammals
drops below 4µm [4], [5]. Methods such as synchrotron
radiation Micro-CT (SRµCT) [6] have been used to reach
resolutions of 1.4µm, however the imaging time is prohibitive
for entire organs such as the brain. Finally, CT vascular
imaging cannot be used to image additional structures, such
as cells, in the surrounding tissue.

Microscopy techniques, such as confocal microscopy [7],
are sufficient for resolving the three-dimensional structure of
capillary networks but are dependent on light penetration into
the tissue and are therefore limited to the specimen surface.
In order to reconstruct complete microvascular models, we
require microscopy techniques capable of imaging tissue on a
large scale in all three dimensions.

A. High-Throughput Microscopy

We create our data sets using a high-throughput technique
known as Knife-Edge Scanning Microscopy (KESM) [8]. This
imaging method overcomes several of the limitations inherent
to standard confocal microscopy by using physical serial
sectioning. Thin sections of tissue are concurrently cut and
imaged through a light microscope using a high-speed camera
(Fig. 1). This provides several benefits over standard three-
dimensional microscopy techniques:

• KESM is not constrained to the specimen surface
• Resolution along the imaging axis is generally higher
• Imaging speed is significantly faster (in excess of

100MB/s)
• No registration or deconvolution is necessary



One of the major disadvantages of using physical sectioning is
that the tissue is destroyed during the imaging process. Large
volumes are therefore imaged in several separate columns and
assembled into a three-dimensional mosiac [9] (Fig. 2). In
addition, any information that we wish to associate with the
microvascular network, such as cellular data, must be imaged
in a single pass and stored in the same data set. These extra
structures often reduce image contrast and compete with the
capillary network during segmentation.

Fig. 1. Imaging and sectioning using Knife-Edge Scanning Microscopy [8].
Tissue is cut using a diamond knife and concurrently imaged with a high-speed
line-scan camera. Cut sections are imaged aligned and in-focus, eliminating
the need for alignment and deconvolution.

Fig. 2. Creating a mosaic from imaged KESM columns. Each column is
initially imaged as an independent three-dimensional data set. The columns
are then compiled together into a single data set.

B. Imaging Methods

We created two large volumetric data sets based on different
staining procedures for brain microvasculature. We first cre-
ated a high-contrast whole-brain data set by perfusing India ink
through the mouse circulatory system. This is a well-known

stain that dyes the microvessels black (Fig. 3). Although this
method is high-contrast, it does not provide any information
about the tissue surrounding the microvascular system.

As stated previously (Section II-A), physical sectioning
destroys the tissue as it is imaged. Therefore, in order to gather
as much information as possible during a single imaging pass,
we create an additional data set by imaging tissue stained with
Nissl [10]. This stain labels all cells and extracellular tissue in
the brain while the vasculature remains unstained (Fig. 3). This
provides a means of associating cellular information with the
vascular structure, although the contrast between the unstained
capillaries and the surrounding tissue is greatly reduced.

The whole-brain data set took approximately two weeks to
image and requires 2TB of uncompressed storage. We limited
the Nissl-stained data set to a large region of somatosensory
cortex. This region is important because it allows us to see the
change in vasculature and cellular density between white and
grey matter. For the whole-brain data set, we focus on regions
of high vasculature, including the spinal cord and cerebellum
(Fig. 5a and b). For the Nissl stained brain, we examine the
somatosensory cortex and underlying white matter (Fig. 5c).

Fig. 3. Cropped samples of tissue stained with India ink (left) and Nissl
(right). Vascular filaments are unstained when the tissue is prepared with Nissl,
and stained black with an India ink perfusion.

C. Image Processing

Both random noise and lighting artifacts are present in
KESM images. This is due to both lighting conditions and
mechanical vibrations. Lighting artifacts are removed using
a median-based destriping algorithm [11]. This technique is
fast and preserves features in the data set, but does not
eliminate noise. Since the diameters of microvessels are near
the resolving power of the microscope, noise and changes in
contrast result in frequent gaps and artifacts in the network
isosurface (Fig. 4). In addition, standard image processing
techniques such as median filtering and blurring [12] can
further damage the network isosurface. Therefore,we elect not
to use blurring for noise removal, which may cause data loss
and introduce further breaks in the network. Instead we rely
on segmentation algorithms that are robust in the presence of
noise.

III. EXTRACTING NETWORK STRUCTURE

Given a three-dimensional data set representing a tissue
sample, we create a graph describing the structure of the



(a) (b) (c)
Fig. 5. Maximum intensity projection of the mouse spinal cord (left, 1500 sections) and close-up views of a capillary network in the cerebellum (center,
512x512x512) and the neocortex (right, 512x512x512).

Fig. 4. Cropped isosurfaces from India ink (left) and Nissl (right). Because of
noise and low contrast, the network isosurfaces contain frequent gaps, making
it difficult to accurately reconstruct network connectivity and topology.

embedded filament network. We do this by finding the internal
medial axis of each filament, including points where the
filaments are connected.

A. Previous Work

There are several segmentation tools available for tracking
macroscopic vascular structures, such as those found in MRI
and CT data sets. An overview of these methods is presented
by Kirbas et al. [13]. These techniques often rely on centerline
extraction from an isosurface [14], region growing [15], or
template-matching [12]. In addition, filtering techniques can
be used to enhance the quality of segmentation for linear and
curvilinear objects [16]. As mentioned previously (Section II-
C), the isosurface can be damaged due to noise while features
in the surrounding tissue can produce over-segmentation when
using thresholding. Although region growing methods are
effective for finding the filament surface, they generally require
some initial segmentation in order to converge to a meaningful
result. Although we have found template matching methods to
be robust in the presence of noise, these techniques involve

testing various template sizes and orientations with each voxel
in a data set. This is computationally expensive since the
template must be tested in several positions, orientations, and
sizes.

B. Segmentation

Vector tracking methods [17], [18], [19], [20] rely on
template matching local to the region around a filament.
The degree to which the filament cross section matches the
provided template is used to estimate the filament trajectory.
This estimated trajectory is then used to reduce the number of
template sizes and orientations tested.

Given a point that lies on a filament, vector tracking
algorithms predict the trajectory of the filament by sampling
a region around this initial point. We then step along the
filament in the direction of the estimated trajectory, thereby
traversing the filament axis. Vector tracking generally uses
three-dimensional template matching and is therefore robust
in the presence of noise and broken filaments. Unlike standard
template matching, we use a heuristic to limit sampling to a
region near the filament. Since microvasculature occupies a
very small volume of the data set (Section V), the number
of samples required is greatly reduced. In this section, we
describe our vector tracking methods, while further details can
be found in our previous work [21].

1) Heuristics: Given a point pi on the filament, we predict
the next point pi+1 along the filament axis by sampling the
region around pi using a template. We look for the optimal
transformation matrix T that minimizes the heuristic function

h(T ) =
∫

x

∫
y

∫
z

|Φ(Tx)− γ(x)|dx (1)

where Φ is the volumetric data set, γ is a template function,
and the point x = [x, y, z] is a point on the template. The
matrix T is composed of affine components that describe the
position, orientation, and size of the template:

T = Tr× R× S (2)

In this equation, Tr, R, and S are affine transformations
respectively representing a sampled position, orientation, and
scale of the template γ.



2) Tracking: We find the minimum value of the heuristic
function h(T ) by sampling a discrete set of transformations.
We construct Tr based on the initial position pi:

Tr =


1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1

 (3)

We then construct a set of rotation matrices R =
[R0, R1...RN ] that orient the template along an associated set
of sample directions r = [r0, r1...rN ]. We use a template
that is rotationally invariant along the direction vector ri.
Therefore, the associated orientation matrix Ri can be com-
posed using any two other vectors orthogonal to ri. Likewise,
we construct a series of scale matrices Si = siI where
si = [s0, s1...sM ] and I is the identity matrix. By sampling
combinations of R and S, we select the samples that minimize
the cost function h(T ). The position of the template is updated
by taking a step along the estimated filament trajectory based
on the selected orientation vector ri, which produced the
minimum value of h.

We use a volumetric cylinder as a template since it is both
rotationally invariant along ri and accurately represents the
structure of most capillaries. The orientation and size of the
template is adjusted as it is moved down each filament, in order
to provide an accurate match (Fig. 6). Although the template
size can be used as an estimate of the filament radius, it is
highly dependent on how well defined the surface is relative
to the background. As each step along a filament is taken, the
current position pi is tested against previously traced filaments
in order to detect intersections. Further details on efficient
filament tracking methods can be found in Al-Kofahi et al.
[18] as well as our previous work on hardware-accelerated
techniques [22].

pi
pi+1

(x) pi pi+1

pi+2

Fig. 6. (left) We track the filament axis by matching a template function γ
to the filament. (right) After computing the optimal template orientation (Eq.
1), we take successive steps along the filament axis.

3) Seed Points: Filament tracking requires us to create
initial seed points on each filament from which to initiate
tracking. We place seed points using the method proposed
by Al-Kofahi et al. [18]. We project a region onto a two-
dimensional plane using a maximum intensity projection for
Nissl or a minimum intensity projection for India ink. Seed
points are then placed on the plane using a conservative
threshold and projected back into the three-dimensional region.
Note that we are not concerned with over-seeding since branch
detection will remove excess seed points.

IV. REFINEMENT

Based on the filament skeleton found using vector tracking,
we construct a graph G representing the structure of the

filament network. Nodes connecting two edges in G represent
samples along a single capillary. Branch points within the
capillary network are represented by nodes in G with more
than two edges (Fig. 7a).

Filament radius can then be estimated based on the optimal
size of the template estimated during each tracking step, or
by segmenting the filament cross-section using methods such
as active contours [3]. When basing the radius estimate on
the template size, we are limited to the discrete number of
sample sizes used during tracking. In addition, these radii are
dependent on the estimated trajectory of the filament in both
cases. Therefore, small errors in filament trajectory can result
in a cross-section that is not orthogonal to the true filament
trajectory. Another option is to evolve a level set surface
outward from the skeleton [23], however both active contours
and level sets require several parameters to optimize fitting the
resulting curves or surfaces.

Our approach instead relies on the network isosurface. Since
our sampling resolution is sufficient to resolve the smallest
vessels, there is little fear of misclassifying large vascular
segments due to undersampling. As mentioned previously,
however, the network isosurface contains structural flaws that
make it difficult to determine network topology and connec-
tivity. However, the isosurface does contain useful information
about the surface structure and diameter of each filament in
the network. In this section we discuss how we refine the
network with morphological information from the microvas-
cular isosurface, providing radius information for anatomical
studies.

Given our original data set represented as the scalar vol-
ume function Φ, we manually select an isovalue that most
accurately represents the microvascular surface Γ embedded
in Φ. When computing an isosurface from image data, noise
and artifacts cause misclassifications of the volume in one of
two ways:

• (A) External regions are incorrectly classified as in-
terior regions (false positives). This results in over-
segmentation, causing erroneous surfaces to be created
in the tissue surrounding the filament network.

• (B) Interior regions are incorrectly classified as exterior
regions (false negatives). These errors result in unusually
thin filaments or gaps in the network.

We compute the capillary radii for our vascular model
by using mutual information between the extracted skeleton
(Sec. III) and the network isosurface. By mapping isosurface
information onto the network skeleton, we can find many of
the erroneous cases produced by misclassifications and edit
them out of our final model.

A. Mapping

We first create a mapping between the network skeleton
and the data set. By overlaying the graph G, representing the
network skeleton, with the scalar volume function Φ, we create
a direct mapping G ⇒ Φ where any point on a node or edge
of G represents a three-dimensional position within the data
set Φ (Fig. 7b). We then construct an implicit signed distance
function Fsdf based on the data set such that Φ ⇒ Fsdf and



therefore G ⇒ Fsdf . We use the standard definition of a signed
distance function:

Fsdf =

{
dΦ(x, Γ) if x is outside Γ and
−dΦ(x, Γ) if x is inside Γ.

(4)

where x is a point on G and dΦ(x,Γ) is the shortest distance
between x and the isosurface Γ.

Standard 
Node

Branch 
Node

G




(a) (b)

Fig. 7. (left) The traced graph G contains standard and branch points
indicating positions on the filament axis. (right) We create a mapping from
G to Φ by overlaying the traced graph onto the volumetric function.

Note that, if the function Φ is noise-free and all points in
the graph G lie exactly on the filament axis, the radius r at
any point x on G can be found by looking up the associated
point in Fsdf :

r = −Fsdf (x) (5)

We will first discuss efficient methods for creating the signed
distance function Fsdf and then describe how G is refined in
order to find the radius of each point in the network.

B. Computing a Distance Field

We compute an implicit signed distance function by solving
the Eikonal equation |∇F | = 1 on a discrete grid. There are
several efficient methods available, including Fast Sweeping
[24] and Fast Marching [25]. Fast Sweeping provides an
O(n) solution, but requires that every voxel be evaluated.
Fast Marching can be done in O(n log n) time but allows
us to march outward from a surface and stop computation
when necessary. We note that it is only necessary to solve
the negative, or internal, portion of Fsdf since the radius
information exists inside the surface Γ specified by the zero
level-set of Fsdf . Since the volume inside Γ is usually much
smaller than the volume of the data set (see Sect. V), we use
a single pass of Fast Marching to evaluate the distance field
only inside the network isosurface.

We first initialize Fsdf . Grid points next to the surface Γ are
initialized with the distance from the surface while all other
grid points are set to some large positive value. We then march
inward computing the distance function for all values inside Γ
(Fig 8). A detailed description is given by Osher and Fedkiw
[26].

C. Radius Computation

We create an initial estimate of the filament radius by
resampling Fsdf at points that lie on G. By limiting sampling
to points on or near nodes and edges in G, we greatly reduce
noise due to misclassifications of type A (false positives). This

Fig. 8. Orthogonal section from the cortical data set (left) and equivalent
section from the function Fsdf (right). For clarity, Fsdf has been fully
evaluated and scaled to [0...255].

is because false positives, by definition, occur outside of the
network while the distance values in Fsdf are always based
on the closest point on Γ (Fig. 9a).

Misclassifications of type B (false negatives) give erroneous
results by causing interior regions to be labeled as exterior.
This causes breaks in the filament or makes the isosurface
unnaturally narrow along a portion of a capillary (Fig. 9b).
When these regions are sampled, r is either very small or
negative. These misclassifications are resolved by propagating
known values from neighboring nodes in G.

Since the graph G is based on a heuristic estimate of the
network embedded in Φ, it is unlikely that all points on G
lie exactly on the filament axis. Therefore, sampling exactly
on G leads to under-estimating the capillary radius since the
corresponding point in Fsdf may lie closer to the filament
surface. Note that the actual filament axis lies on the point
inside the filament that is furthest from the filament isosurface.
In Fsdf , this surface is represented by the zero level-set.
Therefore, when sampling Fsdf using a point x on G, we
instead sample a region in Fsdf that lies within ε of x.

We set the radius in G equal to the maximum value of r
found within ε of x. We set ε to 5µm, which is close to the
known radius of microvessels. Since microvessels are sparsely
arranged relative to their diameter, it is unlikely for sampling
to cross into other capillaries using this value for ε.

A

A

A

d(x,)

Damaged 
Isosurface
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Fig. 9. We use the graph G to interpolate through errors in the isosurface.
(left) False positives cause erroneous regions to be formed outside the
isosurface. These regions are avoided by only sampling Fsdf near the graph.
(right) Points in G with very small (A) or negative (B) values of Fsdf indicate
isosurface damage. The radius for these points are computed by propagating
valid information about Fsdf from neighboring points.



V. RESULTS AND DISCUSSION

We first imaged an entire mouse brain stained with India
ink at a resolution of 0.6µm× 0.7µm× 1.0µm. Images were
processed to remove lighting artifacts (Sect. II) and stored
as 512x512x512 raw image files. We then specified several
brain regions of interest for analysis. We particularly focused
on the cerebellar cortex and spinal cord (Fig. 5a and b). We
also imaged a large region of mouse cortex stained with Nissl,
processing and storing it in the same manner (Fig. 5c).

A. Computational Anatomy

We used vector tracking (Sect. III) to perform automated
segmentation of the network. We then collected several
anatomical statistics on the structure of the network, such as
the number of segments and branch points per unit volume of
tissue (Table I). We also focus on obtaining local anatomical
information such as the direction of travel of capillaries
(Fig. 10). Statistics and anatomical information are of interest
to anatomists since very little information is available on
the three-dimensional structure of microvasculature. Although
we are unaware of any studies performed at this scale and
resolution, our results are similar to morphometric studies that
have been performed using samples of SRµCT-collected data
for the mouse cortex [6] and confocal microscopy images of
human brain [5].

(a) (b)

(c) (d)
Fig. 10. Vascular trajectory in the neocortex. The tracked vascular network
from a single block (Fig. 11) is shown with filaments colored based on their
direction of travel (red = sagitally, green = horizontally, blue = coronally). The
highly oriented blue filaments are running coronally through white matter.

B. Modeling

Using the structural information available from tracked fila-
ments, we refine the network based on the filament isosurface.
This involves manually selecting an isovalue that accurately
describes the vascular surface (Fig. 11a). Although the surface
is noisy and contains misclassifications, we map the isosurface
information onto the network skeleton. Using our refinement
techniques (Sec. IV), we create a structural model of the
vascular network that describes filament radius as well as

position and connectivity. We then use the refined model
to compute the microvascular volume and surface per unit
volume of tissue (Table I).

Fig. 11. Cerebellar cortex. Vascular isosurface (left) used for refining radius
measurements. Traced vascular network (right) colored based on radius (red
< 2µm, blue > 5µm).

C. Evaluation

We have limited means for comparison and evaluation due
to a lack of similar high-resolution data sets. We instead
focus on the evaluation of vector tracking as a means of
segmentation. Although our algorithm performs well under a
visual evaluation, the complexity of large microscopy data sets
makes errors difficult to find visually.

Because of the nature of microvascular networks, all seg-
ments must be connected in order to allow blood flow.
We consider any traced capillaries that terminate without
branching to be errors. These terminations, accounting for
≈ 3.2% of the network, could be due either to errors in
tracking or inadequate staining. However, changes in brain
microvasculature are known to occur and some portion of these
may be developing or degenerating microvessels.

D. Discussion

In this paper we describe a framework that provides high-
resolution information about the structure of microvasculature
spanning large three-dimensional regions of tissue. Our analy-
sis focuses on mouse brain microvasculature, however similar



TABLE I
COMPUTED STATISTICS FOR THE CAPILLARY NETWORK MODEL BASED ON A REFINED VASCULAR NETWORK. WE DEFINE A segment AS A LENGTH OF

CAPILLARY BETWEEN TWO BRANCH POINTS. ALL STATISTICS ARE SPECIFIED PER CUBIC MILLIMETER OF TISSUE.

Region Segments Length (mm) Branches Surface (mm2) Volume (mm3) Volume(% of total)
Neocortex 11459.7 758.5 9100.0 10.40 0.0140 1.4%

Cerebellum 34911.3 1676.4 19034.4 20.0 0.0252 2.5%
Spinal Cord 36791.7 1927.6 26449.1 22.2 0.0236 2.4%

staining methods have been used on other tissue samples from
other species.

Further work can be done by extending these models to
pathological tissue. This would allow high-resolution analysis
of blood-flow patterns in different disease models. Although
frameworks for fluid simulation in microvessels have been
developed [27], these methods have not been extended to
larger scales due to a lack of high-resolution structural in-
formation. Finally, very little research has been done in the
area of simulating cellular and vascular relationships, which
can be observed in Nissl-stained tissue. Modulation is known
to occur between neurons and microvasculature. Simulation of
these relationships would require detailed cellular morphology
as well as microvascular anatomy.
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