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Abstract What is time? Since the function of the brain is closely tied in with that of
time, investigating the origin of time in the brain can help shed light on this question.
In this paper, we propose to use simulated evolution of artificial neural networks to
investigate the relationship between time and brain function, and the evolution of
time in the brain. A large number of neural network models are based on a feed-
forward topology (perceptrons, backpropagation networks, radial basis functions,
support vector machines, etc.), thus lacking dynamics. In such networks, the order
of input presentation is meaningless (i.e., it does not affect the behavior) since the
behavior is largely reactive. That is, such neural networks can only operate in the
present, having no access to the past or the future. However, biological neural net-
works are mostly constructed with a recurrent topology, and recurrent (artificial)
neural network models are able to exhibit rich temporal dynamics, thus time be-
comes an essential factor in their operation. In this paper, we will investigate the
emergence of recollection and prediction in evolving neural networks. First, we will
show how reactive, feedforward networks can evolve a memory-like function (rec-
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ollection) through utilizing external markers dropped and detected in the environ-
ment. Second, we will investigate how recurrent networks with more predictable
internal state trajectory can emerge as an eventual winner in evolutionary strug-
gle when competing networks with less predictable trajectory show the same level
of behavioral performance. We expect our results to help us better understand the
evolutionary origin of recollection and prediction in neuronal networks, and better
appreciate the role of time in brain function.

1 Introduction

What is time? Since the function of the brain is closely tied in with that of time
investigating the origin of time in the brain can help shed light on this question.
Fig. 1 illustrates the relationship between the past, present, and future on one hand,
and brain function such as recollection and prediction on the other hand. Without
recollection (or memory), the concept of past cannot exist, and likewise, without
prediction, the concept of future cannot either. Furthermore, recollection seems to
be a prerequisite for prediction. With this line of thought, we can reason about the
possible evolutionary origin of time in the biological nervous systems. In this paper,
we propose to use simulated evolution of artificial neural networks to investigate the
relationship between time and brain function, and the evolution of time in the brain.

Present FuturePast

Recollection Prediction

Fig. 1 Time, Recollection, and Prediction. The concept of past, present, and future and brain
functions such as recollection (memory) and prediction are all intricately related.

Many neural network models are based on a feedforward topology (perceptrons,
backpropagation networks, radial basis functions, support vector machines, etc.),
thus lacking dynamics (see [Bishop, 1995], and selective chapters in [Haykin, 1999]).
In such networks, the order of input presentation is meaningless (i.e., it does
not affect the behavior) since the behavior is largely reactive. That is, such neu-
ral networks can only operate in the present, having no access to the past or
the future. However, biological neural networks are mostly constructed with a
recurrent topology (e.g., the visual areas in the brain are not strictly hierarchi-
cal [Felleman and Essen, 1991]). Furthermore, recurrent (artificial) neural network
models are able to exhibit rich temporal dynamics [Elman, 1990, Elman, 1991,
Beer, 2000]. Thus, time becomes an essential factor in neural network operation,
whether it is natural or artificial (also see [von der Malsburg and Buhmann, 1992,
Choe and Miikkulainen, 2004, Miikkulainen et al., 2005, Peck et al., 2008]).
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Our main approach is to investigate the emergence of recollection and prediction
in evolving neural networks. Recollection allows organism to connect with its past,
and prediction with its future. If time was not relevant to the organism, it would
always live in the eternal present.

First, we will investigate the evolution of recollection. We will see how reactive,
feedforward networks can evolve a memory-like function (recollection), through
utilizing external markers dropped and detected in the environment. In this part,
we trained a feedforward network using neuroevolution, where the network is al-
lowed to drop and detect markers in the external environment. Our hypothesis is
that this kind of agents could have been an evolutionary bridge between purely reac-
tive agents and fully memory-capable agents. The network is tested in a falling-ball
catching task inspired by [Beer, 2000, Ward and Ward, 2006], where an agent with a
set of range sensors is supposed to catch multiple falling balls. The trick is that while
trying to catch one ball, the other ball can go out of view of the range sensors, thus
requiring some sort of memory to be successful. Our results show that even feed-
forward networks can exhibit memory-like behavior if they are allowed to conduct
some form of material interaction, thus closing the loop through the environment
(cf. [Rocha, 1996]). This experiment will allow us to understand how recollection
(memory) could have evolved.

Second, we will examine the evolution of prediction. Once the recurrent topology
is established, how can predictive function evolve, based on the recurrent network’s
recollective (memory-like) property? For this, we trained a recurrent neural net-
work in a 2D pole-balancing task [Anderson, 1989], again using neuroevolution (cf.
[Gomez and Miikkulainen, 1998, Lim and Choe, 2006c, Lim and Choe, 2006a]). The
agent is supposed to balance an upright pole while moving in an enclosed arena.
This task, due to its more dynamic nature, requires more predictive power to be
successful than the simple ball-catching task. Our main question here was whether
individuals with a more predictable internal state trajectory have a competitive edge
over those with less predictable trajectory. We partitioned high-performing indi-
viduals into two groups (i.e., they have the same behavioral performance), those
with high internal state predictability and those with low internal state predictabil-
ity. It turns out that individuals with highly predictable internal state have a com-
petitive edge over their counterpart when the environment poses a tougher problem
[Kwon and Choe, 2008].

In sum, our results suggest how recollection and prediction may have evolved,
i.e., how “time” evolved in the biological nervous system. We expect our results
to help better understand the evolutionary origin of recollection and prediction in
neuronal networks, and better appreciate the role of time in neural network models.
The rest of the paper is organized as follows. Sec. 2 presents the method and results
from the recollection experiment, and Sec. 3, those from the prediction experiment.
We will discuss interesting points arising from this research (Sec. 4), and conclude
our paper in Sec. 5.
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2 Part I: Evolution of Recollection

In this section, we will investigate how memory-like behavior can evolve in a re-
active, feedforward network. Below, we will describe the ball catching task, and
explain in detail our neuroevolution methods for the learning component. Next, we
will present the details of our experiments and the outcomes.

2.1 Task: Catching Falling Balls

The main task for this part was the falling ball catching task, inspired by [Beer, 2000,
Ward and Ward, 2006]. The task is illustrated in Fig. 2. See the figure caption for
details. The task is simple enough, yet includes interesting dynamic components and
temporal dependency. The horizontal locations of the balls are on the two different
sides (left or right) of the agent’s initial position. Between the left and right balls,
one is randomly chosen to have faster falling speed (2 times faster than the other).
The exact locations are randomly set with the constraint that they must be separated
far enough to guarantee that the slower one must go out of the sensor range as
the agent moves to catch the faster one. For example, as shown in Fig. 2C, when
there are multiple balls to catch and when the balls are falling at different speeds,
catching one ball (usually the faster one) results in the other ball (the slower one)
going out of view of the range sensors. Note that both the left-left or right-right ball
settings cannot preserve the memory requirement of the task. The vertical location,
ball speed, and agent speed are experimentally chosen to guarantee that the trained
agent can successfully catch both balls. In order to tackle this kind of situation, the
controller agent needs some kind of memory.

The learning of connection weights of the agents is achieved by genetic search
where the fitness for an agent is set inversely proportional to the sum of horizontal
separations between itself and each ball when the ball hits the ground. 10 percent of
the best-performing agents in a population are selected for 1-point crossover with
probability 0.9 and a mutation with the rate 0.04.

2.2 Methods

In order to control the ball catcher agents, we used feedforward networks equipped
with external marker droppers and detectors (Fig. 3, we will call this the “dropper
network”). The agent had five range sensors that signal the distance to the ball when
the ball comes into contact within the direct line-of-sight of the sensors. We used
standard feedforward networks with sigmoidal activation units as a controller (see
e.g., [Haykin, 1999]):
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Fig. 2 Ball Catching Task. An illustration of the ball catching task is shown. The agent, equipped
with a fixed number of range sensors (radiating lines), is allowed to move left or right at the bottom
of the screen while trying to catch balls falling from the top. The goal is to catch both balls. The
balls fall at different speeds, so a good strategy is to catch the fast-falling ball first (B and C) and
then the go back and catch the slow one (D and E). Note that in C the ball on the left is outside of
the range sensors’ view. Thus, a memory-less agent would stop at this point and fail to catch the
second ball. Adapted from [Chung et al., 2009].
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where Ii, H j and Ok are the activations of the i-th input, j-th hidden, and k-th output
neurons; v ji the input-to-hidden weights and wk j the hidden-to-output weights; σ(·)
the sigmoid activation function; and Nin, Nhid, and Nout are the number of input,
hidden, and output neurons whose values are 7, 3, and 3 respectively.

The network parameters were tuned using genetic algorithms, thus the training
did not involve any gradient-based adaptation. Two of the output units were used to
determine the movement of the agent. If the agent was moved one step to the left
when O1 > O2, one step to the right when O1 < O2, and remained in the current
spot when O1 = O2.

If these were the only constructs in the controller, the controller will fail to catch
multiple balls as in the case depicted in Fig. 2C. In order to solve this kind of prob-
lem, a fully recurrent network is needed, but from an evolutionary point of view,
going from a feedforward neural circuit to a recurrent neural circuit could be non-
trivial, thus our question was what could have been an easier route to memory-like
behavior, without incurring much evolutionary overhead.

Our answer to this question is illustrated in Fig. 3. The architecture is inspired
by primitive reactive animals that utilize self-generated chemical droppings (excre-
tions, pheromones, etc.) and chemical sensors [Wood, 1982, Tillman et al., 1999,
Conover, 2007]. The idea is to maintain the reactive, feedforward network archi-
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tecture, while adding a simple external mechanism that would incur only a small
overhead in terms of implementation. As shown in Fig. 3, the feedforward network
has two additional inputs for the detection of the external markers dropped in the
environment, to the left or to the right (they work in a similar manner as the range
sensors, signaling the distance to the markers). The network also has one additional
output for making a decision whether to drop an external marker or not.

As a comparison, we also implemented a fully recurrent network, with multiple
levels of delayed feedback into the hidden layer. (See [Elman, 1990, Elman, 1991]
for details.) This network was used to see how well our dropper network does in
comparison to a fully memory-equipped network.

I
1

if O3 > θ,

DropMarker = True (1)

else,

DropMarker = False             (2)

(1) (2)
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Fig. 3 Feedforward Network with Dropper/Detector (“Dropper Network”). A feedforward
network with a slight modification (dropper and detector) is shown. The basic internal architecture
of the network is identical to any other feedforward network, with five range sensor (I1 to I5), and
two output units that determine the movement (O1 and O2). The two added input units (I6 and I7)
signal the presence of a dropped marker on the bottom plane, and the one additional output unit
(O3) makes the decision of whether to drop a marker at the current location or not. Note that there
are no recurrent connections in the controller network itself. Adapted from [Chung et al., 2009].

2.3 Experiments and results

The network was trained using genetic algorithms (neuroevolution), where the con-
nection weights and the dropper threshold θ were encoded in the chromosome. The
fitness was inversely proportional to the sum of the distance between the agent and
the ball(s) when the ball(s) contact the ground. Each individual was tested 12 times
with different initial ball position (which was varied randomly) and speed (1 or 2
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steps/time unit), and mixed scenarios with fast left ball vs. fast right ball. We used
one-point crossover with probability 0.9, with a mutation rate of 0.04.
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Fig. 4 Ball Catching Performance. The average ball catching performance of the dropper net-
work is presented (gray bar), along with that of the recurrent network (black bar). The error bars
indicate the standard deviation. The results are reported in two separate categories: fast left ball
and fast right ball. This was to show that the network does not have any bias in performance. Both
networks perform at the same high level (above 90% of all balls caught). This is quite remarkable
for a feedforward network, although it had the added dropper/detector mechanism. We also tested
a purely feedforward networks, but they were only able to catch 50% of the balls (catch one, miss
one). Adapted from [Chung et al., 2009].

It is quite remarkable that feedforward networks can show an equal level of per-
formance as that of the recurrent network, although the feedforward networks were
equipped with the dropper/detector. For example, compared to the recurrent net-
works, the number of tunable parameters are meager for the dropper network since
they do not have layers of fully connected feedback. Six additional weights for
input-to-hidden, and three for hidden-to-output, plus a single threshold parameter
(10 in all) is all that is needed.

One question arises from the results above. What kind of strategy is the dropper
network using to achieve such a memory-like performance? We analyzed the trajec-
tory and the dropping pattern, and found an interesting strategy that evolved. Fig. 5
shows some example trajectories. Here, we can see a curious overshooting behavior.

Fig. 6 shows how this overshooting behavior is relevant to the task, when com-
bined with the dropping events. The strategy can be summarized as below: (1) The
right ball fall fast, which is detected first. (2&3) The agent moves toward the right
ball, eventually catching it (4). At this point, the left ball is outside of the range
sensors’ view, it overshoots the right ball, drops a marker there, and immediately
returns back, seemingly repelled by the marker that has just been dropped. (5) The
agents keeps on dropping the marker which pushing back to the left, until the left
ball comes within the view of the range sensor. (6) The agent successfully catches
the second ball. This kind of aversive behavior is quite the opposite of what we
expected, but for this given task it seem to make pretty good sense, since in some
way the agent is “remembering” which direction to avoid, rather than remembering
where the slow ball was (compare to the “avoiding the past” strategy proposed in
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Fig. 5 Agent Trajectory. Agent trajectory during six ball catching trials are shown (gray: dropper
network; black: recurrent network). The x axis represents time, and the y axis the agent position
(0 marks the initial location of the agent). Within each trial, 200 time steps are shown. As the left
and the right ball positions were randomized, the peak of the trajectories differ in their y values.
The first three trials were the “fast left ball” condition and the last three were the “fast right ball”
condition. Both networks are successful at catching both balls within each trial, but the dropper
network shows a curious overshooting behavior (for example, near the half way point in each
trial). See Fig. 6 for details. Adapted from [Chung et al., 2009].

[Balch, 1993]). Finally, we have also been able to extend our results reported here
to a more complex task domain (food foraging in 2D). See [Chung and Choe, 2009]
for details.

3 Part II: Evolution of Prediction

In this second part, we will now examine how predictive capabilities could have
emerged through evolution. Here, we use a recurrent neural network controller in
a 2D pole-balancing task. Usually recurrent neural networks are associated with
some kind of memory, i.e., an instrument to look back into the past. However, here
we argue that it can also be seen as holding a predictive capacity, i.e., looking into
the future. Below, we first describe the 2D pole-balancing task, and explain our
methods, followed by experiments and results. The methods and results reported in
this part are largely based on our earlier work [Kwon and Choe, 2008].
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Fig. 6 Dropper Network Strategy A strategy that evolved in the dropper network is shown. (1)
Fast ball enters the view. (2&3) Agent moves toward the fast ball. (4) Agent catches fast ball, lose
view of the slow ball, overshoots, and start dropping markers (black dots). (5) Seemingly repelled
by the markers, the agent moves back to the slow ball, continuously dropping the markers, and (6)
eventually catches it. Adapted from [Chung et al., 2009].

3.1 Task: 2D Pole Balancing

Fig. 7 illustrates the standard 2D pole balancing task. The cart with a pole on top of it
is supposed to be moved around while the pole is balanced upright. The whole event
occurs within a limited 2D bound. A successful controller for the cart can balance
the pole without making it fall, and without going out of the fixed bound. Thus,
the pole angle, cart position, and their respective velocities become an important
information in determining the cart’s motion in the immediate next time step.

3.2 Methods

For this part, we evolved recurrent neural network controllers, as shown in Fig.
8A. The activation equation is the same as Eq. 1, and again, we used the same
neuroevolution approach to tune the weights and other parameters in the model.
One difference in this model was the inclusion of a facilitating dynamics in the
neuronal activation level of the hidden units. Instead of using the H j value directly,
we used the facilitated value
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Fig. 7 2D Pole-Balancing Task. The 2D pole-balancing task is illustrated. The cart (gray disk)
with an upright pole attached to it must move around on a 2D plane while keeping the pole balanced
upright. The cart controller receives the location (x,y) of the cart, the pole angle (θx,θy), and their
respective velocities as the input, and generates the force in the x and the y direction. Adapted from
[Chung et al., 2009].

A j(t) = H j(t)+ r (H j(t)−A j(t−1)) , (2)

where H j(t) is the hidden unit j’s activation value at time t, A j(t) the facil-
itated hidden unit j’s activation value, and r an evolvable facilitation rate pa-
rameter (see [Kwon and Choe, 2007] for details). This formulation turned out to
have a smoother characteristic, compared to our earlier facilitation dynamics in
[Lim and Choe, 2005, Lim and Choe, 2006b, Lim and Choe, 2008].

One key step in this part is to measure the predictability in the internal state dy-
namics. That is, given m past values of a hidden unit H j (i.e., 〈H j(t − 1),H j(t −
2), ...,H j(t −m)〉), how well can we predict H j(t). The reason for measuring this
is to categorize individuals (evolved controller networks) that have a predictive po-
tential and those that do not, and observe how they evolve. Our expectation is that
individuals with more predictable internal state trajectory will have an evolutionary
edge, thus opening the road for predictive functions to emerge. In order to have an
objective measure, we trained a standard backpropagation network, with the past in-
put vector 〈H j(t−1),H j(t−2), ...,H j(t−m)〉 as the input and the current activation
value H j(t) as the target value. Fig. 9 shows a sketch of this approach. With this,
internal state trajectories that are smoother and easier to predict (Fig. 10A) will be
easier to train, i.e., faster and more accurate, than those that are harder to predict
(Fig. 10B). Note that the measured predictability is not used as a fitness measure.
Predictability is only used as a post-hoc analysis. Again, the reason for measur-
ing the predictability is to see how predictive capability can spontaneously emerge
throughout evolution.
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Fig. 8 Cart Controller and Its Internal State. A sketch of the cart controller network is shown.
A. The network had 3 hidden units, which was fed back as the context input with a 1-step delay, to
implement a recurrent architecture. The network had 8 inputs, each corresponding to the measures
listed in Fig. 7. The two output units represents the force to be applied in the x and the y direction,
respectively. B. The activity level of the hidden units can be seen as the agent’s internal state, which
in this case, can be plotted as a trajectory in 3D (see C). Adapted from [Chung et al., 2009].

t+1
t

t−1
t−2

t−3

Fig. 9 Measuring Predictability in the Internal State Trajectory. A simple backpropagation
network was used to measure the predictability of the internal state trajectory. A sliding window
on the trajectory generated a series of input vectors (N past data points) and the target values (the
current data point) to construct the training set. Those with a smoother trajectory would be easier
to train, with higher accuracy. Adapted from [Chung et al., 2009].
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A. High Predictability B. Low Predictability

Fig. 10 Internal State Trajectories. Typical internal state trajectories from the hidden units of
the controller networks are shown for A. the high predictability group and B. the low predictability
group.

3.3 Experiments and results

Fig. 11 shows an overview of our experiment.

internal state

analysis

internal stateanalysis

All Controllers High−perform.
Controllers

Low ISP

High ISP
selection
process

evolutionary

Fig. 11 Overview of the Experiment. An overview of the experiment is shown. First, high-
performing individuals (capable of balancing the pole for over 5,000 steps) are collected throughout
the generations. Next, the internal state predictability of the selected ones are measured to separate
the group into high internal state predictability (High ISP) and low ISP groups. The High and Low
ISP groups are subsequently tested in a tougher task. Adapted from [Chung et al., 2009].

The pole balancing problem was set up within a 3 m× 3 m arena, and the output
of the controller exerted force ranging from -10 N to 10 N. The pole was 0.5 m long,
and the initial tilt of the pole was set randomly within 0.57◦ . We used neuroevolu-
tion (cf. [Gomez and Miikkulainen, 1998]). Fitness was determined by the number
of time steps the controller was able to balance the pole within ±15◦ from the verti-
cal. Crossover was done with probability 0.7 and mutation added perturbation with
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a rate of ±0.3. The force was applied at a 10 ms interval. The agent was deemed
successful if it was able to balance the pole for 5,000 steps.

For the backpropagation predictors, we took internal state trajectories from suc-
cessful controllers, and generated a training set for supervised learning, using 3,000
data points in the trajectory data. We generated an additional 1,000 inputs for valida-
tion. Standard backpropagation was used, with a learning rate of 0.2. For each data
point, if the error was within 10% of the actual value, we counted that as correct,
and otherwise incorrect. With this, for each trajectory we were able to calculate the
predictive accuracy.

We evolved a total of 130 successful individuals, and measured their internal state
predictability. Fig. 12 shows the predictability in the 130 top individuals, which ex-
hibits a smooth gradient. Among these, we selected the top 10 and the bottom 10,
and further compared their performance. Note that since all 130 had excellent per-
formance, the 20 that are selected in this way by definition have the same level
of performance. The trick here is to put those 20 controllers in a harsher environ-
ment, by making the pole balancing task harder. We increased the initial pole angle
slightly to achieve this. The results are shown in Fig. 13. The results show that the
high internal state predictability (high ISP) group outperforms the low internal state
predictability (low ISP) group by a large margin. This is a surprising outcome, con-
sidering that the two types of networks (high ISP vs. low ISP) had the same level
of performance in the task they were initially evolved in. This suggests that certain
internal properties, although only internally scrutinizable at one time, can come out
as an advantage as the environment changes. One interesting observation we made
in our earlier paper [Kwon and Choe, 2008] is that the high performance in the high
ISP group is not due to the simpler, smoother internal state trajectory linearly carry-
ing over into simpler, smoother behavior, thus giving it an edge in pole balancing.
On the contrary, we found that in many cases, high ISP individuals had complex
behavioral trajectories and vice versa (see [Kwon and Choe, 2008] for details). In
sum, these results show how predictive capabilities could have evolved in evolving
neural networks.
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Fig. 12 Internal State Predictability. Internal state predictability of 130 successful controllers
are shown, sorted in increasing order. Adapted from our earlier work [Kwon and Choe, 2008,
Chung et al., 2009].
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Fig. 13 Pole Balancing Performance. The performance (number of pole balancing steps) of the
controller network is shown for the high ISP group (black bars) and the low ISP group (white bars).
For this task the initial pole angle was increased to within (θx,θy) = (0.14◦,0.08◦). In all cases, the
high ISP group does better, in many cases reaching the 5,000 performance mark, while those in the
low ISP group show near zero performance. Note that these are new results, albeit being similar to
our earlier results reported in [Kwon and Choe, 2008]. Adapted from [Chung et al., 2009].

4 Discussion

The main contribution of this paper is as follows. We showed how recollection and
prediction can evolve in neural circuits, thus linking the organism to its past and its
future.

Our results in Part I suggest an interesting linkage between external memory
and internalized memory (cf. [Clark, 2008, Turvey and Shaw, 1979]). For exam-
ple, humans and many other animals use external objects or certain substances
excreted into the environment as a means for spatial memory (see [Rocha, 1996,
Chandrasekharan and Stewart, 2004] for theoretical insights on the benefit of the
use of inert matter for cognition). In this case, olfaction (or other forms of chem-
ical sense) serves an important role as the “detector”. (Olfaction is one of the
oldest sensory modalities, shared by most living organisms [Hildebrand, 1995,
Vanderhaeghen et al., 1997, Mackie, 2003].) This form of spatial memory resides
in the environment, thus it can be seen as external memory. On the other hand, in
higher animals, spatial memory is also internalized, for example in the hippocam-
pus. Interestingly there are several different clues that suggest an intimate relation-
ship between the olfactory system and the hippocampus. They are located nearby
in the brain, and genetically they seem to be closely related ([Machold et al., 2003,
Palma et al., 2004] showed that the Sonic Hedgehog gene controls the development
of both the hippocampus and the olfactory bulb). Furthermore, neurogenesis is most
often observed in the hippocampus and in the olfactory bulb, alluding to a close
functional demand [Frisén et al., 1998]. Finally, it is interesting to think of neuro-



Evolution of Time 15

modulators [Krichmar, 2008] as a form of internal marker dropping, in the fashion
explored in this paper. Fig. 14 summarizes the discussion above. From the left to
the right, progressive augmentation to the simplest feedforward neural network that
enable memory of the past and facilities for prediction of future events is shown.
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Fig. 14 From the Present to the Past, and Forward to the Future. Initially, only reactive be-
havior mediated by feedforward networks may have existed (left-most panel, bottom). By evolving
external dropper/detector capability while maintaining the feedforward topology, simple memory
function may have emerged (second panel, bottom), reminiscent of olfaction. Then, this kind of
dropper/detector mechanism could have been internalized, resulting in something in between the
dropper/detector (second panel, bottom) and the fully recurrent (third panel, bottom). Neuromodu-
lators could be thought of as such an intermediate stage (top panel). Finally, a full-blown recurrent
architecture may have resulted (third panel, bottom). The interesting thing is that the brain seem to
have kept all the legacy memory systems (olfaction and neuromodulators), integrating them with
the latest development (recurrent wiring).

Prediction (or anticipation) is receiving much attention lately, being perceived as
a primary function of the brain [Llinás, 2001, Hawkins and Blakeslee, 2004] (also
see [Rosen, 1985] for an earlier discussion on anticipation). Part II of this paper
raises interesting points of discussion regarding the origin and role of prediction
in brain function. One interesting perspective we bring into this rich on-going dis-
cussion about prediction is the possible evolutionary origin of prediction. If there
are agents that show the same level of behavioral performance but have different
internal properties, why would evolution favor one over the other? That is, certain
properties internal to the brain (like high ISP or low ISP) may not be visible to the
external processes that drive evolution, and thus may not persist (cf. “philosophi-
cal zombies” [Chalmers, 1996]). However, our results show that certain properties
can be latent, only to be discovered later on when the changing environment helps
bring out the fitness value of those properties. Among these properties we found pre-
diction. Our preliminary results also indicate an important link between delay in the
nervous system and the emergence of predictive capabilities: Fig. 15 shows that neu-
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ral networks controllers exhibit more predictable behavior as the delay in the input
is increased in a 2D pole-balancing task. For more discussion on the relationship be-
tween delay, extrapolation, delay compensation, and prediction; and possible neural
correlates, see [Lim and Choe, 2005, Lim and Choe, 2006b, Lim and Choe, 2006d,
Lim and Choe, 2008, Kwon and Choe, 2009].
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Fig. 15 Effect of Delay on State Predictability. The absolute correlations between hidden state
activity at a given moment and true sensory state in the future time step are shown, for neural
network controllers trained with different amount of delay in the sensory input lines (error bars
indicate standard deviation). This correlation measures the degree of predictability in the internal
dynamics. As the delay grows, the predictability also grows. Adapted from [Mann and Choe, 2010]
(abstract).

There are several promising future directions. For Part I, recollection, it would
be interesting to extend the task domain. One idea is to allow the agent to move
in a 2D map, rather than on a straight line. We expect results comparable to
those reported here, and also to those in [Balch, 1993]. Furthermore, actually
modeling how the external memory became internalized (see Fig. 14, second to
third panel) would be an intriguing topic (a hint from the neuromodulation re-
search such as [Krichmar, 2008] could provide the necessary insights). Insights
gained from evolving an arbitrary neural network topology may also be helpful
[Stanley and Miikkulainen, 2002b, Stanley and Miikkulainen, 2002a]. As for Part
II, prediction, it would be helpful if a separate subnetwork can actually be made
to evolve to predict the internal state trajectory (as some kind of a monitoring pro-
cess) and explicitly utilize the information.

5 Conclusion

In this paper we have shown how recollection and prediction could have evolved
in neural network controllers embedded in a dynamic environment. Our main re-
sults are that recollection could have evolved when primitive feedforward nervous
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systems were allowed to drop and detect external markers (such as chemicals), and
that prediction could have evolved naturally as the environment changed and thus
conferred a competitive edge to those better able to predict. We expect our results
to provide unique insights into the emergence of time in neural networks and in the
brain: recollection and prediction, past and future.
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