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Abstract—What is the evolutionary value of self-awareness and
agency in intelligent agents? One way to make this problem
tractable is to think about the necessary conditions that lay
the foundation for the emergence of agency, and assess their
evolutionary origin. We postulate that one such requirement is the
predictability of the internal state trajectory. A distinct property
of one’s own actions compared to someone else’s is that one’s own
is highly predictable, and this gives the sense of ‘‘authorship”.
In order to investigate if internal state predictability has any
evolutionary value, we evolved sensorimotor control agents driven
by a recurrent neural network in a 2D pole-balancing task. The
hidden layer activity of the network was viewed as the internal
state of an agent, and the predictability of its trajectory was
measured. We took agents exhibiting equal levels of performance
during evolutionary trials, and grouped them into those with high
or low internal state predictability (ISP). The high-ISP group
showed better performance than the low-ISP group in novel tasks
with substantially harder initial conditions. These results indicate
that regularity or predictability of neural activity in internal
dynamics of agents can have a positive impact on fitness, and,
in turn, can help us better understand the evolutionary role of
self-awareness and agency.

I. INTRODUCTION

To build intelligent agents that can interact with their
environments and also their own internal states, the agents
must identify the properties of objects and also understand
the properties of other animated agents [1]. One of the
fundamental steps in having such abilities is to identify agents
themselves from others. Therefore, finding self has been a
grand challenge not only among cognitive scientists but also
in computer scientists. Even though Feinberg and Keenan
strongly suggested that the right hemisphere has a crucial role
in the creation of the self [2], localizing the self does not
answer many intriguing questions about the concept of the self.
On the other hand, a Bayesian self-model that can distinguish
self from others was proposed, and Nico, an upper-torso
humanoid robot, was able to identify itself as self through
the dynamic Bayesian model using the relationship between
its motor activity and perceived motion [3]. Bongard, Zykov,
and Lipson made a self-aware robot which can adapt to the
environment through continuous self-modeling [4]. We believe
that Autonomous Mental Development (AMD) [5] can also
lead to a self-model, e.g., as in Self-organizing Autonomous
Incremental Learner (SAIL) [5] and Dav [6].
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Nico [3] focused more on higher level modeling of self-
awareness; SAIL [5] and Dav [6] concentrated on modeling
autonomous mental development; and the resilient machine [4]
continuously re-modeled its physical body rather than concep-
tual self. As far as we know, neuronal substrate of self has
not been discussed. It is not easy to answer the question about
the self without invoking complex and controversial issues.
However, an alternative way exists to address the problem: If
we uncover necessary conditions for the emergence of self-
awareness, then we might be able to make some progress. An
interesting insight is that predictability in the internal state
dynamics can be such a necessary condition. We postulate
that the predictability of the neural activities in the internal
dynamics may be the initial stepping stone to self-awareness.
Such predictability could lead to authorship (and eventually
agency and self-awareness), since a distinct property of one’s
own actions is that they are always perfectly predictable.

A. Self-awareness

Self-awareness has an important role in cognitive pro-
cesses [7]. Self-aware system has an ability to distinguish
itself from others. Being self-aware can be a good beginning
to have cognitive capabilities. However why have intelligent
agents such as humans evolved to have self-awareness? Is
self-awareness simply an evolutionary by-product of self-
representation as Menant pointed out [8]? Otherwise, if cog-
nitive agents always have to be self-aware, there must be an
associated evolutionary pressure. However, the attributes of
self-awareness is still uncertain [9]. So, it is difficult to track
down the roots of the emergence of self-awareness or agency.
One way to circumvent the problem is to find circumstances
that can serve as necessary conditions for the emergence of
self-awareness, and assess their evolutionary value.

In this paper, we focus on finding these necessary condi-
tions. One possible requirement would be the predictability
of one’s own internal state trajectory (another possibility is
direct prediction of one’s own action, as in Nolfi et al.’s work
on neuroevolution combined with learning [10]). We postulate
that Internal State Predictability (ISP) can have a strong impact
on performance of the agents, and ISP could have lead to
intelligent agents developing self-awareness.



B. Internal State

Many researchers have focused on external environments
and behaviors when developing intelligent robots or agents.
This was especially true when the investigations were carried
out in an evolutionary context.

However, researchers started to take a serious look at
the internal dynamics of an intelligent agent as well. The
central nervous system models sensorimotor dynamics, and
the model seems to reside in the cerebellum [11]. Exploring
one’s internal state can lead to a sense of self. The sense
of self may be a prerequisite to building a machine with
consciousness [12].

There may be a consensus that neuronal activation levels
can be considered as the state of a neural system. Bakker and
de Jong pointed out that the state of a neural network could be
defined by the current activation levels of the hidden units [13].
Also, the system state could be viewed as consciousness, in a
way [14]. There are also physiological arguments about this
idea. The firing rate of each neuron in the inferior temporal
visual cortex tells much about the stimuli applied to the
cortex [14]. On the other hand, spiking activities from place
cells in the hippocampus can be used to rebuild certain features
of the spatial environment [15]. These results tell us that
spiking patterns of neurons that form one’s internal state might
influence task performance. In sum, knowing internal state of
oneself may be the first step of being conscious and internal
state itself can be simply stated as spiking patterns of neurons
during task performance.

The idea that self-awareness has evolutionary advantages
is not new [8]. Menant hypothesized that noticing agony of
conspecifics may be the first step in developing self-awareness.
But as far as we understand, the precondition of identifying
agony in conspecifics is self-awareness and the identification
of agony is also a requirement of being self-aware. It falls into
a circular argument. Namely, self-awareness is a requirement
of identifying agony and also, identifying agony develops
self-awareness. Moreover, Menant’s argument is more like a
hypothesis, without giving plausible evidence.

We present experimental results that indicate “understand-
ing” internal states has an actual evolutionary benefit.

II. METHOD

We hypothesized that activation values from neurons in
the hidden layer can represent the internal state of an agent.
Understanding one’s own internal state can be strongly linked
to knowing what is going to happen in one’s internal state.
We quantified such an understanding as the predictability of
the internal state trajectories.

In order to examine whether internal state predictability
has any evolutionary value, we evolved sensorimotor control
agents with recurrent neural network controllers. The neural
activity in the hidden layer of the network was viewed as
the internal state of an agent. A two-degree-of-freedom (2D)
pole balancing task was chosen to scrutinize the internal state
trajectories. The neural network controllers were trained by
a neuro-evolution method. The activation values from each

neuron in the hidden layer from the neural network were stored
to measure the predictability of each neuron’s activation trace
over time. The predictability of each neuron was quantified
by a supervised learning predictor which forecasted the next
activation value based on the past activations. Note that any
reasonable predictor can be used for this, e.g. Hidden-Markov
models, and the choice is orthogonal to the main argument of
this paper.

A. Two-Degree-of-Freedom Pole Balancing

Pole balancing task has been used to demonstrate complex
and unstable nonlinear dynamical systems in the field of artifi-
cial neural networks for decades because it is straightforward
to understand and easy to visualize. A conventional 1D pole
balancing task has dealt with the following situation: A pole
is hinged atop a cart that travels along a single straight line
track. The pole can only move on the vertical plane along
the track [16], [17]. It makes the task simple enough to be
analyzed, but it is not complex enough to show interesting
behavior. Here, we used 2D pole balancing where force to the
cart can be applied in both the = and the y directions, so the
cart moves around on a 2D plane within a boundary and a pole
attached on top of the cart can fall in any direction [18], [19].
As a result, the task is more complex and difficult to master
than 1D version. Figure 1 shows a 2D pole-balancing system
with which we conducted our experiment. (Removing velocity
information from the 1D problem could make the task more
difficult and thus more interesting, but we did not pursue this
direction.)
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Two-degree-of-freedom pole-balancing system.
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Fig. 1.

The state of the cart (the gray circle on the bottom figure 1)
with a pole on top is characterized by the following physical
parameters: The cart position in the plane (z,y), the velocity
of the cart (z,y), the angle of the pole from the vertical in
the = and the y directions (6, 6, ), and their angular velocities
(9;, éy) [18]. These parameters were used as eight input values
to a neural network. Fourth-order Runge-Kutta method was
used to simulate the real world physics.

B. Time Series Prediction

A time series is a sequence of data from a dynamics system.
The measurements of one or more variables of the system take
place at a successive and regular time interval [20]. The system



dynamics changes the state over time, so it can be considered
as a function of the current state vector z(t). A time series is
a sequence of either vectors or scalars.

{z(to), (t1), -+, @(ts), o(t:), o(t; + 1), -}

The activation level of hidden neurons in a neural network
can be considered as a time series. In our case, three sets
of time series exist since there are three neurons in the
hidden layer of our neural network. Let us assume that we
predict value x at time ¢ + 1 which is the very next state
from present. If we can look back N time steps including
the current one from time ¢, we can say that forecasting
2(t + 1) means finding a function f(-) using a time series
{z(t),z(t = 1),z(t — 2), - -x(t — N + 1) }(figure 2):

F(t+1) = f (x(t), x(t — 1), 2(t —2),--,2(t — N +1)).

x(t)
x(t—1)
x(t—2)

x(t—-N+1) ~

x(t+1)

Fig. 2. Predicting future using the past.

1) Neural Network Predictors: Feed-forward neural net-
works have been widely used to forecast a value given a time
series dataset [20]. The neural predictors use a set of N data
as inputs, and a single value as an output for the target of the
network. The number of input data is often called the sliding
window size [20]. Figure 3 gives the basic architecture of a
feed-forward neural network predictor.

x(t)
x(t—1)
x(t=2) x(t+1)

X(t—N+1)

Fig. 3. A neural network predictor for a time series.

2) Adaptive Error Rates: When a neural network predictor
forecasts a future state, the outcome of the predictor, which is
a predicted value, should be compared with a real activation
value. If a prediction error, the difference between a predicted
and a real value, is greater than a certain amount (we call it
minimum error threshold) then it is fair to say the prediction
had failed. However, we cannot use a fixed minimum error
threshold, because amplitude envelope of activation values
could be different from neuron to neuron. Why does the
envelope of activation matter?

As figure 4 shows, it cannot be stated that two cases have
the same amount of error, although the actual amount of error
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Fig. 4. An example of adaptive error rates. The big solid arrows indicate the
amplitude of activation values, and the hollow big ones indicate the amount
of error. When estimating the error, the activation amplitude envelope should
be considered.

is almost the same in (a) and (b). The minimum error threshold
value should be adapted to the variance of the time series.
Namely, if the amplitude of a time series is also small, the
minimum error threshold should be small, and if it is large,
then the threshold should become large as well.

Erry, = |ActValuema, — ActValuemin| X R,

where Erry, is the minimum error threshold, ActValue
means an activation value of a neuron in a hidden layer, and R
is the adaptive rate for the minimum error threshold adjusted
based on the activation amplitude as shown in figure 4.

III. EXPERIMENTS AND RESULTS

We evolved agents driven by a recurrent neural network
in a 2D pole balancing task, and then partitioned successful
individuals into two groups: One group had high ISP, and
the other had low ISP. The high-ISP group showed better
performance than the low ISP group in tasks with harsher
initial conditions.

A. Training the Controllers

We implemented the pole balancing agent with a recurrent
neural network controller. The artificial neural networks were
trained by genetic algorithms. Network connection weights of
an agent were evolved to balance the pole during the training
sessions.

Force between —10N and 10N was applied at regular time
intervals (10 millisecond). The pole was 0.5 meter long and
was initially tilted by 0.573° (0.01 radian) on the x-z plane
and the y-z plane respectively. The area where the cart moved
around was 3 x 3 m?.



1) Neural Network Architecture: The configuration of a
controller network was as follows: eleven input nodes (eight
input values from the simulated physical environment and
three context input values from the hidden layer), one hidden
layer with three neurons, and two output neurons (figure 5).
The eight parameters describing the current state of the cart
were used as the input values, and two values from the output
neurons, I, and I, represented the force in the = and the y
direction.

Figure 5 shows the recurrent network that we used in the
experiments.
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Fig. 5. Recurrent neural network controller for 2D pole-balancing. The signal
flow inside each neuron is shown in the box. Z~! means unit delay. [21]

2) Neuro-evolution: In training these non-linear controllers,
neuroevolution methods have proved to be efficient [22], [23].
Fitness was determined by the number of time steps where
a network was able to keep the pole within £15° from
the vertical in the x and the y directions and kept the cart
within the 3 x 3 m? area. The chromosome encoded the
connection weights between input and hidden layer neurons,
and between hidden and output neurons. Crossover occurred
with probability 0.7 and the chromosome was mutated by £0.3
perturbation rate with probability 0.2. The force was applied in
both the = and the y directions at 10 millisecond intervals. The
number of networks in a population was 50 for an evolutionary
epoch. If an agent balanced the pole more than 5,000 steps,
we considered it as a success.

B. Training the Neural Network Predictors

Neuronal activities in the hidden layer of the recurrent
neural network were viewed as the internal state of the agent.
The predictability in the internal state trajectory was able to
be measured using a feed forward neural network predictor.

The size of the sliding window was four. The activation
values of neurons in the hidden layer formed the network
input. 3,000 activation values were used as training data for
each input, and a test set used the next 1,000 steps (3,001 to
4,000). Time series from 1 to 1,000 steps and from 4,001 to
5,000 steps were not used because we did not want to use
the somewhat chaotic initial movements and finalized stable
movements. Back-propagation algorithm was used to train the
predictors (learning rate 0.2). In the test sessions, we compared

the predicted value with the real activation value. We chose
10% threshold error rate to calculate the adaptive minimum
error threshold when comparing the forecasted activation with
the real activation value. The adaptive error rate was deter-
mined empirically, based on the performance of the time series
predictor.

C. Performance Measurement in High- vs. Low-ISP groups

We evolved approximately 130 pole balancing agents. By
definition, all the agents were necessarily good pole balancers
during the training phase. Some of them turned out to have
high ISP and others low ISP. Figure 6 shows all the agents
sorted by their prediction success rates.

Internal State Predictability
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Evolved agent sorted by the prediction rate
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Fig. 6. All trained agents sorted by their prediction success rates. A small
number of agent toward the left end show very low predictability, while those
near the right end show very high predictability.

We chose pole balancers having top 10 highest ISPs, and
bottom 10 lowest ISPs. High predictability means all three
neurons from the hidden layer have highly predictable internal
state trajectories. Most of their prediction rates in a high ISP
group were over 99%, and only two pole balancers had average
prediction success rates 83.30% and 88.93% (u = 95.61%
and o = 5.55%). As for low ISP pole balancers, their average
prediction performances from the three neurons were between
17.37% and 48.53% (u = 31.74% and o = 10.79%). Figure 7
shows the predictability in the high and the low ISP group.

The learning time of the two different groups was also
investigated, but we could not find a significant difference,
even though low ISPs took slightly less time than high ISP
(figure 8). Note again that the performance of both groups
(high and low ISP) were comparable during the evolutionary
trials.

In order to further test and compare the performance be-
tween the two groups, we made the initial condition in the
2D pole balancing task harder than that during the training
phase. All the neural network controllers were evolved in a
condition where both projected initial angles to the z-z and the
y-z plain were 0.573° (0.01 radian). In the test condition, we
had those trained neural network controllers balance the pole
in a more difficult initial condition where the initial projected
angles were 4.011° (0.07 radian) on the z—z plain, and 2.865°
(0.04 radian) on the y-z plain. This strategy was used to push
the controllers to the edge so that differential behavior results.



Comparison of High and Low Predictability
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Fig. 7. A comparison of the average predictability from two groups: high
ISP and low ISP. The predictive success rate of the top 10 and the bottom
10 agents from figure 6 are shown. Each data point plots the mean predictive
success rate of three hidden neurons of each agent. The error bars indicate
the standard deviation.

Our main results were that networks with higher ISP show
better performance in harder tasks than those with lower ISP.
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Fig. 8. Learning time in high vs. low ISP groups. Agents are ordered in the
same order as in figure 7.
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Fig. 9. Novel task performance in high vs. low ISP groups. Each test case
(with low vs. high ISP results) corresponds to an experiment ran with identical
initial condition, so the pairing is meaningful.

Figure 9 shows that the evolved pole balancers with higher
ISP have better performance than the other group.

One might argue that this result seems straightforward,
because simple internal state trajectories simply reflect be-
havioral properties. A trivial solution to a pole balancing
problem would be to quickly make the pole stand up vertically,

Behavioral Predictability
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Fig. 10.
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and then make minimal adjustments. But according to our
experimental results (see figure 10), higher ISP does not
necessarily mean that their behavioral trajectory is also simple.
Figure 11 (compared to figure 13) and figure 12 (compared to
figure 14) show that behavioral complexity is not necessarily
directly related to the complexity of internal states. That is,
even an agent having high ISP may have complex behavioral
properties, and those with low ISP may have simple behavioral
attributes.

Fig. 11. Examples of internal state dynamics from the high ISP group
showing smooth trajectories.

Fig. 12. Examples of internal state dynamics from the low ISP group showing
abrupt, jittery trajectories.
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Fig. 13. Examples of behavioral trajectories of x, y positions and pole angles
from the high ISP group exhibiting complex trajectories.
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Fig. 14. Examples of behavioral trajectories of x, y positions and pole angles
from the low ISP group exhibiting complex trajectories.

IV. CONCLUSION

Starting with individuals evolved to give the same level of
behavioral performance, we showed that those with simpler
(more predictable) internal dynamics can achieve higher levels
of performance in harsher environmental conditions. These
results suggest that internal agent properties such as simpler
internal dynamics may have a survival value. We also showed
that the increased survival value is not always due to smoother
behavior resulting from the simpler internal states. The impli-
cation of these findings is profound, since they show that,
in changing environments, apparently circumstantial internal
agent properties can affect external behavioral performance
and fitness. The results also show how an initial stepping
stone (or a necessary condition) in the evolutionary pathway

leading to self-awareness and agency could have formed. We
expect the framework we developed here to help us better
address hard issues such as self-awareness and agency in an
evolutionary context. Future directions include evolution of
model-based prediction of both internal and external dynamics
(cf. [4], [10]), and generalization of our framework to other
more complex tasks.
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