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a b s t r a c t

Goal-directed behavior is a hallmark of cognition. An important prerequisite to goal-directed behavior
is that of prediction. In order to establish a goal and devise a plan, one needs to see into the future
and predict possible future events. Our earlier work has suggested that compensation mechanisms for
neuronal transmission delay may have led to a preliminary form of prediction. In that work, facilitating
neuronal dynamics was found to be effective in overcoming delay (the Facilitating Activation Network
model, or FAN). The extrapolative property of the delay compensation mechanism can be considered as
prediction for incoming signals (predicting the present based on the past). The previous FANmodel turns
out to have a limitation especially when longer delay needs to be compensated, which requires higher
facilitation rates than FAN’s normal range. We derived an improved facilitating dynamics at the neuronal
level to overcome this limitation. In this paper, we tested our proposed approach in controllers for 2D pole
balancing, where the new approach was shown to perform better than the previous FANmodel. Next, we
investigated the differential utilization of facilitating dynamics in sensory vs. motor neurons and found
that motor neurons utilize the facilitating dynamics more than the sensory neurons. These findings are
expected to help us better understand the role of facilitating dynamics in delay compensation, and its
potential development into prediction, a necessary condition for goal-directed behavior.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Goal-directed behavior is a hallmark of intelligent cognitive
systems. Therefore, understanding such behavior is not only
important but also essential to scrutinize intelligence. However,
it is not easy to directly investigate goal-directed behavior since
there is an implied agent behind such behavior, and there is yet
not a consensus on what constitutes an agent.
Thus, here we take a different approach to initiate a first step

toward understanding goal-directed behavior. Our strategy is to
focus on a precondition, or a necessary condition for goal-directed
behavior, rather than trying to address the problem head-on.
Themain questionwewill address here is how the precondition

could have evolved. Once the prerequisite has evolved, it could
have laid a critical stepping stone toward goal-directed behavior.
We theorize that one important necessary condition of goal-
directed behavior is prediction. Note that a goal is always defined
as a future event. Thus, without the ability to anticipate future
events, one may not be able to establish a goal. In order to
anticipate, one needs to be able to predict. Consequently, by
analyzing how prediction has evolved, we could shed light on
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a potential evolutionary pathway toward goal-directed behavior.
Also, wemust note that prediction is increasingly being recognized
as one of the core functions of the brain (Hawkins & Blakeslee,
2004; Llinás, 2002) (see also Carpenter and Grossberg (1992) and
Li and Kozma (2003) on prediction in dynamic neural network
architectures).
In our previous work (Lim & Choe, 2006a, 2006b, 2006c, 2008),

we hypothesized that delay in the nervous system could have led
to a delay compensation mechanism, which in turn could have
further developed into a predictive function. First, let us take a
look at neuronal delay in detail before investigating the predictive
property of the delay compensation mechanism. Strictly speaking,
representations of the present in the brain may not even be
precisely alignedwith the present in the environment. Our sensory
informationwould reflect the past if the higher perceptual areas in
the brain register the signal at the moment the signal is received.
Consider visual processing. A series of steps is required for visual
stimulus information to reach higher visual processing areas:
photoreceptors, bipolar cells, ganglion cells, the lateral geniculate
nucleus, the primary visual cortex, and beyond (Nijhawan, 2008).
It could take in the range of 100 to 130 ms for the visual signal
to arrive in the prefrontal cortex (in monkeys) (Thorpe & Fabre-
Thorpe, 2001). In order to make up for the neuronal transmission
delay, the brain should utilize information from the past and
predict the current state.
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(a) Delay. (b) Facilitation.

Fig. 1. Delay and delay compensation through facilitating neural activity. (a) The solid curve represents the original signal, and the dotted curve corresponds to the delayed
signal (delayed by d). (b) The original signal can be extrapolated by facilitating the neural activity (further increasing when the signal is increasing, and further decreasing
when the signal is decreasing). For example, an activation value b at time t (original signal from t−d, delayed by d) can bemodulated down to a through facilitating dynamics,
where the modulated value a is an approximation of the original signal at time t .
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(a) Short delay. (b) Long delay.

Fig. 2. Length of delay and required degree of facilitation for delay compensation. The solid curve represents the original signal, and the dotted curve the delayed signal
(delayed by d). (a) Short delay requires only a moderate amount of facilitation to compensate for the delay. (b) More facilitation is needed as the length of delay between
the original and the delayed signal becomes greater (the vertical arrows are longer in (b) than in (a)).
Some researchers probed this topic in terms of delay compensa-
tion (Lim, 2006; Lim & Choe, 2006b, 2006c) or prediction (Down-
ing, 2005; Krekelberg & Lappe, 2000). Lim and Choe suggested a
neural dynamic model for delay compensation using Facilitating
Activity Network (FAN) based on short-term plasticity in the neu-
ron known as facilitating synapses (Lim, 2006; Lim & Choe, 2006b).
Facilitating synapses have been found at a single neuron level in
which the membrane potential shows a dynamic sensitivity to the
changing rate of the input (Liaw & Berger, 1999; Lim, 2006). As il-
lustrated in Fig. 1, the original signal can be recovered from the
delayed signal by using facilitating dynamics. According to the fa-
cilitation model, as Fig. 2 illustrates, higher facilitation rates are
needed to effectively deal with longer delay. However, the FAN
model turns out to have limitations, i.e., oscillation under high fa-
cilitation rate (see Section 3 for details). Furthermore, the analysis
in Lim (2006) and Lim and Choe (2006c) did not consider differen-
tial utilization of facilitation among different neuron types within
the context of the entire network (e.g., sensory neurons vs. motor
neurons).
Here, we propose an improved dynamic model, Neuronal

Dynamics using Previous Immediate Activation value (NDPIA) that
solves the oscillation problem in FAN. In addition, we conducted
experiments in less restricted conditions than in Lim (2006) and
Lim and Choe (2006c): (1) input delay was applied to the system
for the entire duration of each experiment, and (2)we extended the
delay to twice the usual value compared to the earlier experiments
with FAN, and analyzed the results from the increased delay.
To test NDPIA and to investigate the properties of the
neuronal networks with the suggested neuronal dynamics, we
employed a two degree-of-freedom (2D) pole-balancing (Gomez
& Miikkulainen, 1998) agents with evolved recurrent neural
networks as their controllers (cf. Gomez and Miikkulainen (2003)
and Gomez (2003)). We used conventional neuroevolution to train
the networks (see Section 3.2 for detailed justification, and R.G.
Ward and R. Ward (2009) for successful use of such strategy in a
different task domain).
Our main findings are as follows: (1) NDPIA can solve

the oscillation problem in FAN during heightened facilitation.
(2) Motor neurons in a NDPIA network tend to evolve high
facilitation rates, confirming similar previous results with FAN. (3)
Longer delay leads to higher facilitation rates. (4) Neural network
controllers using NDPIA dynamics result in better performance in
pole-balancing tasks than those based on FAN. (5) NDPIA networks
show robust performance under extremely high facilitation rates,
especially when only the motor neurons are facilitated. These
results suggest that delay and facilitation rate must be positively
correlated for effective compensation of delay, and the best part in
the system to introduce such dynamics is the motor system.
Below, we first look into related research, then we analyze

the limitations in the FAN dynamics. Then we will propose a
new facilitating dynamics (NDPIA). Next, the 2D pole-balancing
problem and evolutionary neural networks will be introduced.
Finally we will present and analyze the results, followed by
discussion and conclusion.
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(a) Increasing activation. (b) Decreasing activation.

Fig. 3. Facilitating Neural Activity. (a) The immediate activation value X(t) is modulated by the difference between X(t) and the modulated activation value A(t − 1) in the
previous time step, with facilitation rate r . (b) The same principle can be applied to the decreasing activation case.
(a) Increasing activation. (b) Decreasing activation.

Fig. 4. Problems in facilitating dynamics of FAN. (a)When the activity is increasing, the immediate activation value X(t) could be smaller than themodulated value A(t−1)
from the previous time step, so themodulated value at the present A(t) becomes smaller than the immediate value X(t). This property of the conventional FANmodel makes
the system output to become unstable. (b) Basically, the same analysis can be applied in the case of decreasing activity. When the activity is decreasing, X(t) is larger than
A(t − 1). Hence, A(t) becomes even larger than X(t).
2. Background

The activation level or the membrane potential of the postsy-
naptic neuron is modulated by the change in the rate of past ac-
tivation. These dynamic synapses generate short-term plasticity,
which shows activity-dependent decrease (depression) or increase
(facilitation) in synaptic transmission (Fortune & Rose, 2001; Liaw
& Berger, 1999). These activities occur within several hundredmil-
liseconds from the onset of the stimulus (Liaw & Berger, 1999;
Markram, 2003). Lim (2006), Lim and Choe (2006b, 2006c) investi-
gated the relationship between these neuronal dynamics and delay
compensation, and suggested that facilitating dynamics at a single
neuron level may play an important role in the compensation of
neuronal transmission delay.
How can such dynamics be realized in a neural network? We

can begin with conventional artificial neural networks (ANNs), but
ANNs lack such single neuron-level dynamics (note the adding
recurrent connections can introduce anetwork-level dynamics). As
we can see in Eq. (1), the activation values in conventional ANNs are
determined by the instantaneous input value and the connection
weights.

X(t) = g

(
m∑
j=1

wjXj(t)

)
(1)

where g(·) is a nonlinear activation function such as the sigmoid
function, m is the number of neurons of the preceding layer, wj is
the connection weight, and Xj is an activation value from a neuron
of the preceding layer (Lim, 2006; Lim & Choe, 2006b, 2006c).
Eq. (1) shows that there is no room to consider the past values of
Xj. Recurrent ANNs could be one simple solution for this, but the
dynamics may not be fast enough to cope with input delays. Tan
and Cauwenberghe (1999) proposed a neural network based Smith
predictor to compensate for large time delay; Miall and Wolpert
(1996) used the Kalman filter in the internal forward model to
predict the next state; and Lim and Choe (2006c) showed that
facilitating neuronal dynamics at a single neuron level can play an
important role in compensating for input delays.
In order to overcome the issues above, the activation value

needs to be directly modulated as in the Facilitating Activity
Network (FAN) model (Lim, 2006; Lim & Choe, 2006b, 2006c):

A(t) = X(t)+ r1(t) (2)

where A(t) is the modulated (facilitated or depressed) activation
value at time t , X(t) is the immediate activation value, r is a
dynamic rate (−1 ≤ r ≤ 1), and1(t) is X(t)− A(t − 1).
If r ≥ 0, and if the signal increases for a while, the activation

value is augmented by the difference 1(t) of the immediate
activation value X(t) and the previous modulated activation A(t −
1)with the rate r (see Fig. 3(a)). If r ≥ 0, but if the signal decreases,
the activation value is diminished by 1(t), because it becomes a
negative value in this case as shown in Fig. 3(b). This results in
facilitation.
Suppose r ≤ 0, and that the signal increases for awhile, then the

activation value is diminished by the difference1(t) between the
immediate activation value and the previousmodulated activation
with the rate r . If the signal decreases for a while under the
same condition, the amount of decrease becomes smaller than the
immediate value by 1(t) with the rate r , because r is a negative
value and 1(t) is a negative value as well, so r1(t) becomes a
positive value. This makes the signal greater than the immediate
signal. Furthermore it means that the signal is decreased less
than what it is supposed to be. In other words, the modulated
activation values can be considered within the range of (X(t) −
1(t)) ≤ A(t) ≤ (X(t) + 1(t)) (Lim, 2006) which means that the
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(a) Increasing activation. (b) Decreasing activation.

Fig. 5. Proposed facilitation neural activity. (a) By using the previous immediate value X(t − 1) instead of the modulated value A(t − 1), the present modulated value is
stabilized. (b) The same change is applied to the decreasing activation case.
a b

Fig. 6. The proposed facilitation model solving the problem in FAN. (a) The modulated activation value A(t) is guaranteed to be larger than the immediate activation value
X(t) as long as activation increases. (b) A(t) is guaranteed to be smaller than X(t) as long as activation decreases. Compare to Fig. 4.
present activation value could be diminished by 1(t) (depressing
dynamics) or augmented by1(t) (facilitating dynamics).
Neural networks using the FAN model showed not only better

performance than conventional networks but they were also more
robust in various delay conditions (Lim, 2006; Lim & Choe, 2006a).

3. Methods: Enhanced facilitating activity model

Even though Lim (2006), Lim and Choe (2006b, 2006c) paid
attention to short-term synaptic plasticity, especially facilitating
synapses, and suggested a compensation mechanism for neuronal
transmission delay, several further challenges remain. As Fig. 2
illustrates, we need to use a higher facilitation rate as the delay
increases. However, Lim and Choe did not investigate the effect of
higher facilitating rates. rates. When the FAN model is used with
high facilitation rates, the modulated activation values become
unstable/oscillatory. Furthermore, a systematic analysis of the
neuronal dynamics in the network level is needed because Lim
and Choe did not investigate differential utilization of facilitating
dynamics dependent on neuron type.
Here, we propose an improved dynamics model to address

these challenges. The previous FAN model turns out to have a
limitation especially when longer delay is applied to the model.
Below, we analyze the potential problems of the FAN model in
detail and propose an enhanced model to deal with the problems.
First, we expand Eq. (2) into:

A(t) =

(
k−1∑
n=0

(−1)nrn(1+ r)X(t − n)

)
+ (−1)krkA(t − k). (3)

Now we can more clearly see that the current modulated
activation value A(t) is a function of X(t − 1), X(t − 2), X(t − 3)
and so on. The problem is that, given a positive dynamic rate r ,
X(t−1),X(t−3), etc. contribute negativelywhileX(t−2),X(t−4),
etc. positively. These positive and negative components can give
rise to abrupt oscillations in A(t) that originally do not exist in the
input signal.
To better illustrate the problem, let us take an example in the

case of facilitating dynamics. As we can see in Fig. 4(a), even when
X(t) keeps increasing from X(t − 1), the immediate activation
value X(t) could be smaller than the previous modulated value
A(t − 1). This is not desirable since A(·) will oscillate unlike X(·).
The same phenomenon happens when the activity is decreasing as
in Fig. 4(b).

3.1. Enhanced facilitating activity model

In order to address the above issue, we propose an improved
neuronal dynamics model (NDPIA) which considers only the
previous immediate activation value (see Figs. 5 and 6).

A(t) = X(t)+ r(X(t)− X(t − 1)) (4)

where A(t) is the modulated (facilitated or depressed) activation
value at time t , X(t) is the immediate activation value, and r is the
dynamic rate. The dynamic rate r can either facilitate or depress the
activity, and it is not limited to−1 ≤ r ≤ 1, so that we can either
facilitate or depress the immediate activation values as highly as
we want. But practically, this value should not be too high.
As we have shown in Eq. (3), the effect of X(t − (n + 1))

disappears very quickly as n increases and r is less than 1. NDPIA
accounts for the current and the previous immediate activation
values. So in order to consider the previous activation values such
as A(t − 1) and A(t − 2) prior to the immediate one, we used
recurrent neural networks in the present paper, and the context
inputs that are simply feedback from the hidden layer could make
up for the effect of older past activation values.
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Fig. 7. Two degree-of-freedom pole-balancing task. The cart (gray disc) with an
upright pole attached to it must move around on a 2D plane while keeping the
pole balanced upright. The cart controller receives the location (x, y), the pole angle
(θx, θy), and their respective velocities as the input, and generates the force in the
x and the y direction. Note that x and y are projected angles to the x–z and the y–z
plane respectively.

3.2. 2D pole-balancing problem with delayed inputs

We tested our new facilitating dynamics in recurrent neural
network controller for a 2D pole-balancing task (Fig. 7). The state
of the cart (the gray disc on the bottom Fig. 7) with a pole on
top is characterized by the following physical parameters: The cart
position in the plane (x, y), the velocity of the cart (ẋ, ẏ), the angle
of the pole from the vertical in the x and the y directions (θx, θy),
and their angular velocities (θ̇x, θ̇y) (Gomez &Miikkulainen, 1998).
To test our facilitation dynamics, we employed the 2D

pole-balancing problem, following Lim and Choe (2006c). The
differences from Lim and Choe (2006c) are as follows. First,
we tested with delays in all inputs, and the delay was applied
during the entire test period in all experiments. In Lim and
Choe (2006c), delay was applied either to a subset of the input
for the entire duration, or to all the inputs only for a limited
time period during each trial. Second, we evolved the controllers
under no delay condition and tested them with up to two-step
delay with increased facilitation rate. Longer delay may not be
acceptable because of the high possibility of phase difference (see
Section 5 for a discussion). In Lim and Choe (2006c) only one-
step delay was investigated for measuring the performance of
controller networks. Third, we used conventional GA to evolve
the controllers instead of Enforced SubPopulation algorithm (ESP)
(Gomez, 2003; Gomez & Miikkulainen, 1998). The main reason for
using conventional GA was to have a clearly separated role for
the sensory and the motor neurons, to investigate the differential
utilization of facilitating dynamics in these neuron types.
The cart controller applies force to the cart on a flat surface

to balance the pole (the pole must remain within ±15◦ of the
vertical). The force was applied in both the x and the y directions at
a 0.1 s interval. If the controller balances the pole more than 5000
steps (1 step = 100 ms), we consider it as a success. The fitness
function returned the number of steps the agent balanced the pole
within±15◦ from the vertical and stayed inside a 3 m× 3 m area
(each axis ranging from−1.5m to 1.5m).Weused recurrent neural
networks to control the cart (Fig. 8). See Section 3.3 for details
on the neural network controller. Fifty recurrent networks were
evaluated in each generation, and to avoid situations where some
neurons evolve to have accidentally good fitness values, we used
the roulette wheel sampling method (Buckland, 2002; Ghanea-
Hercock, 2003; Yao, 1999). We used a pole length of 0.5 m tilted 1◦
from the vertical towards the +y direction with (θ̇x, θ̇y) = (0, 0)
in the initial state. Force within the range of −10 N to 10 N was
applied to the cart at a time step of 0.1 s, based on the output
(Fx, Fy).
θx
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θ ,
y

θ ,
x

x

y ,

x ,

y

Z–1

Z–1

Z–1

Z–1

Fx

Fy

X(t)
A(t)

NDPIA

Fig. 8. Recurrent neural network for 2D pole balancing. The signal flow inside each
neuron is shown in the box. Z−1 means unit delay.

With this setup, we (1) investigated the effect of dynamic rates
in a single neuron level by evolving the rates from depressing to
facilitating property, (2) compared the performance between FAN
and NDPIA, and (3) showed that facilitating motor neurons are
better at coping with longer delays than facilitating sensory inputs
or both sensory and motor neurons.

3.3. Neuroevolution

Lim (2006) and Lim and Choe (2006c) investigated dynamic
activation rates in a single neuron level, however, they have not
tested the effect of facilitation in different parts of the network
(e.g., by neuron type).
We evolved controllers having recurrent neural networks with

dynamics neuronal activities. These activity rates were evolved to
range across −1 ≤ r ≤ 1 which means it could be facilitating or
depressing.
We used a recurrent neural network with eight input nodes,

three context input nodes, three hidden neurons, and two output
neurons in order to control the cart in the plane (3m×3m). Fig. 8
shows the recurrent network that we used in the experiments.
Input nodes correspond to the cart position (x, y), the velocity of
the cart (ẋ, ẏ), the angle of the pole from the vertical in the x and
the y directions (θx, θy), and their angular velocities (θ̇x, θ̇y). The
hidden layer activations are fed back as contextual input, with a
unit delay. Output neurons Fx and Fy represent the force in the x
and the y direction, respectively. Each neuron’s immediate activity
is calculated by Eq. (1), and subsequently facilitated using the
dynamics in Eq. (4).
In training these nonlinear controllers, neuroevolutionmethods

proved efficient (Gomez, 2003; Gomez & Miikkulainen, 2003).
Unlike Gomez (2003) and Gomez and Miikkulainen (2003), we
used a conventional neuroevolution method instead of ESP. The
chromosome encoded the connection weights between input
nodes and hidden layer neurons, and between hidden layer
neurons and output neurons. In the experiment of the evolution
of dynamic activation rates, we additionally included a dynamic
rate parameter in the chromosome. Crossover occurred with
probability 0.7 and the chromosome was mutated by ±0.3
(perturbation rate) with probability 0.2. These parameters were
determined empirically.

4. Experiments and results

First, we tested whether NDPIA helps fix the unstable-
ness/oscillation problem in FAN, using a fixed time series as in-
put. Next, to test the rest, we evolved recurrent neural networks
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(a) FAN. (b) NDPIA.

Fig. 9. Facilitation under fast signal change condition. This graph shows a small portion of the function f (t) = 2 × exp(−t) × sin(t) in the interval [0..20] (dotted line,
simulating a delayed signal). The x axis represents time t and the y axis the activation value f (t). Facilitation rate of r = 0.8 was used in this example. (a) When the signal
changes quickly (increasing leg, from time 0 to 7), the FAN results in jagged oscillation. Note that when the signal change is slow relative to the facilitation rate (decreasing
leg, from time 7 to 20), the oscillation disappears. (b) The proposed method eliminates the oscillation problem in (a). Note that due to the facilitation, the resulting curve
(solid line) appears shifted to the left (i.e., we can say that delay was compensated).
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(a) FAN. (b) NDPIA.

Fig. 10. Facilitation under slow signal change condition. The same function as in Fig. 9 is shown, but in a different interval [20:40]. A higher facilitation rate of r = 0.9 was
used, to demonstrate the oscillation problem in FAN even under slow signal change conditions. (a) Evenwhen the signal changes slowly, if r is high, FAN results in oscillatory
activation. (b) The proposed dynamics again eliminates the oscillation problem, with the same delay compensation property as in Fig. 9.
with FAN or NDPIA dynamics, where the connection weights and
also the dynamic rates were allowed to evolve. The networks were
trained in a 2D pole-balancing task, and then tested with added
delay in the sensory signals (the input).

4.1. Enhanced facilitating activity model

With NDPIA, we were able to correct the oscillation problem in
FAN, discussed in Section 2. We compared the two models with a
signal taking a simple functional form: f (t) = 2×exp(−t)×sin(t)
(t is time). Figs. 9 and 10 show portions of the function where
the change in the signal is either fast or slow. First we observed
the part of the signal where the signal changes rapidly. Here we
used a dynamic activation rate of 0.8 (facilitation). In Fig. 9(a),
which shows FAN, the immediate activation value cannot keep up
with the modulated one, thus oscillation occurs in the modulated
activation values. In otherwords, facilitation did not occur properly
in this case. Fig. 9(b) shows that using NDPIA these oscillations can
be removed. Evenwhen the signal changes slowly, if the facilitation
rate is high enough (0.9was used in this case), the oscillationwould
occur again (Fig. 10). Facilitation rate of 0.9 might seem too high,
but as we examined in Section 1, high facilitation rates can be
necessary. As before, FAN results in oscillation (Fig. 10(a)) while
NDPIA results in no oscillation (Fig. 10(b)).
4.2. Evolved dynamic activation rates

In the recurrent neural network controller, the hidden units
receive direct sensory input, so we can say these are sensory
neurons. In a similar manner we can consider the output neurons
asmotor neurons since they are directly coupled to the cartmotion.
Our main question here is if all types of neurons (sensory or
motor) evolve to utilize facilitating dynamics under delayed input
conditions. Furthermore, we question if increase in input delay
leads to stronger facilitating dynamics.
In order to test these, we encoded into the chromosome the

dynamic activation rates of sensory neurons (hidden) and motor
neurons (output) aswell as the synapticweights in the connections
in the neural network controller.
Fig. 11 shows the distribution of evolved dynamic rates of top

5 individuals from 25 separate populations (each population had
50 individuals), under three different delay conditions (0, 1, and
2). The motor neurons exhibit higher utilization of facilitating
dynamics (high dynamic rate) compared to sensory neurons, when
the delay is high (Fig. 11(c)). The cumulative distribution of the
dynamic rate shows more clearly the positive correlation between
increasing input delay and higher dynamic rate in motor neurons
(Fig. 11(e)) but not in sensory neurons (Fig. 11(d)). In sum, motor
neurons aremore likely to be facilitated, and increasing input delay
leads to higher facilitation.
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Fig. 11. Dynamic rate distribution. The distribution of dynamic rates for the controllers trained with different delay conditions are shown (top 5 individuals from the last
generation in 25 separate evolutionary trials). (a–c) shows the dynamic rate distribution under different delay conditions. As the delay increases, motor neurons increasingly
utilizes higher dynamic rate (i.e., facilitation). (d–e) shows the cumulative distribution, directly comparing the different delay conditions. Only for the motor neurons (e),
increasing delay shifts the cumulative distribution toward the right (i.e., at higher facilitating rates the mean increases from−0.196 to−0.184 to 0.724).
4.3. Pole-balancing performance in FAN and NDPIA

In this experiment, we compared the effectiveness of FAN
and NDPIA in the 2D pole-balancing task, under various delay
conditions.
To test the effectiveness of facilitation under a strictly

controlled environment, we set the facilitation rate to a fixed
value of 0.7, with different types of neurons being facilitated in
three different sets of experiments. We trained (evolved) 60 FAN
networks and 60 NDPIA networks under no delay. Among the
60 networks, 20 were evolved with facilitated motor neurons, 20
networks were evolved with facilitated sensory neurons, and 20
remaining networkswere evolvedwith facilitation in both sensory
neurons and motor neurons for each facilitation model (FAN and
NDPIA respectively).
For testing, we put the evolved networks under no delay, one-

step delay, and two-step delay environment to see the effect of
dynamic activation rates. Fig. 12 shows that NDPIA has better
performance than FAN in most cases, especially under longer
delays. Note that if both sensor andmotor neurons are facilitated at
the same time, no significant difference is found (Fig. 12(c)). There
was notmuch differencewhen therewas no delay in the input (see
delay 0 cases in Fig. 12), but the difference of performance becomes
clear when motor neurons were facilitated as delay increases (see
Fig. 12(b)).

4.4. Pole-balancing performance under extremely high facilitation
rates in different neuron types

In this experiment, we investigated the effect of extremely high
dynamic activation rates under long delay. Controller networks
with NDPIA maintained their performance under longer delay,
with a fairly high facilitation rate of 0.7, especially for the motor
neuron only facilitation (Fig. 12). How would the performance
change if we push the facilitation rate to an even higher value?We
tested how extreme facilitation like that affects performancewhen
different types of neurons are facilitated: sensory, motor, or both.
This is an interesting question since longer delaymight necessitate
higher facilitation rate.
When either the sensory neurons or the motor neurons were

facilitated with a high facilitation rate of 0.7, the performance
remained high (Fig. 13 (a) and (b)), but the performance degraded
when both neuron types were facilitated at that rate (Fig. 13 (c)).
As facilitation rate was further increased to even higher values
(1.2 to 1.5 to 2.0), performance started to degrade for the case
where sensory neurons were facilitated (Fig. 13(a)), but it was not
the case when only motor neurons were facilitated (Fig. 13(b)).
The case with both sensory and motor neurons facilitated showed
consistently low performance regardless of the facilitation rate.
These results suggest that motor neurons could be the best type
to facilitate at higher rates, for the compensation of longer delays.

5. Discussion

The main contribution of our work is to have shown the link
between facilitating neuronal dynamics anddelay compensation in
a systematic study. In particular we have shown that facilitation is
more effective in motor neurons, and that longer input delay leads
to higher rates of facilitation. We have also improved the previous
facilitation model (FAN) (Lim, 2006; Lim & Choe, 2006b, 2006c)
so that higher facilitation rates can be used without side effects
(oscillation). As a consequence, our new approach allowed our
model to deal with longer delay applied over the entire duration
of each trial.
One of themain results of our investigationwas that facilitating

dynamics ismore effective in counteracting delay in certain classes
of neurons (i.e., motor neurons). This could be due to two high-
level reasons: (1) local connection topology, and (2) series of
delay compensation happening in a chain of neurons, and both
could cause over-compensation. First, if the local topology of the
neuron has a recurrent link, then facilitation could be amplified,
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Fig. 12. Comparison of FAN and NDPIA under different delay conditions and for different types of neurons facilitated. (a) Top five individuals from the final generation of
those with facilitated sensory neurons are shown, for delay 0 (top) to delay 2 (bottom). The number of pole-balancing steps in FAN (∗) and NDPIA (◦) are plotted. NDPIA
shows a slight advantage under longer delay conditions (bottom row). (b) The same information is plotted as in (a), for top 25% individuals with facilitated motor neurons.
NDPIA has better performance than FAN under longer delays (middle and bottom rows). (c) The same information is plotted as in (a), for top 25% individuals with facilitated
sensory and motor neurons. There is no significant difference between FAN and NDPIA.
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Fig. 13. The performance of NDPIA in two-step delay under high facilitation rates. Performance of top 5 controllers under extremely high facilitation rates are shown for
facilitated (a) sensory neurons, (b) motor neurons, and (c) sensory and motor neurons. With a facilitation rate of 0.7, there is minimal degradation of performance in (a)
and (b), but much degradation in (c). Also, (b) is the only case where very high facilitation rate (=2.0) does not affect the performance. Thus, when very high facilitation is
needed (e.g., to compensate for longer delays), motor neurons should be facilitated.
thus leading to over-compensation. This is why we believe the
sensory neurons did not do well compared to the motor neurons
(recall that the sensory neurons are the hidden units that receive
not only the input but also the context input from the recurrent
connections). Second, if a chain of neurons originating from the
input and ending in the output are all facilitated, again it could lead
to over-compensation. This could be the reason why the networks
with both sensory andmotor neurons facilitated performedpoorly.
These observations can lead to concrete predictions that can be
experimentally validated: (1) Facilitating neural dynamics, when
employed to perform delay compensation, may be more prevalent
where the local connection topology is feedforward. (2) Within a
sensorimotor processing chain, facilitating dynamicsmay be found
in only few parts of the chain.
As we have seen already in Fig. 11, in order to compensate for

longer delay, higher facilitation should be used. However, since
higher facilitation in longer delaymay cause higher error rates, this
facilitation dynamics is applicable only when the delay is within a
certain bound. In other words, if the signal changes more rapidly
than the delay duration (or equivalently if the delay duration is
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longer than the time scale of signal change), our approach may
not work well. In order to deal with such situations, sensorimotor
anticipation (Gross, Heinze, Seiler, & Stephan, 1999) or sensory
prediction (Downing, 2005; Gross et al., 1999) may be needed.
To address the challenge of longer delay, internal representations,
internal models, or forward models (Oztopa, Wolpert, & Kawato,
2005; Webb, 2004) can also be used. These works suggest the use
of anticipation for the future inputs or states in a higher level than
at the level of neuronal circuits.
In the beginning, we started out with the insight that predictive

function could have originated from delay compensation mecha-
nisms. What our results show is that an intimate relationship ex-
ists between longer delay and higher facilitatory dynamics (i.e., the
compensation mechanism), and that such compensation mecha-
nisms can emerge during the process of evolution. Since the final
outcome of delay compensation is the estimation of the present
state (based on information from the past), one might argue that
it is not prediction. However, the task itself can be systematically
mapped to that of prediction, since it all boils down to the estima-
tion of the state in the relative future, whether that future is now
or whenever (see Werbos (2009)). An interesting future direction
is to see if actual predictive capability can evolve in a similar simu-
lated evolution environment, when the task itself requires predic-
tion, rather than just delay compensation. We expect facilitating
dynamics to again play an important role in such a case.
Another matter of debate is the biological significance of

the proposed facilitating dynamics. As we briefly mentioned
in the beginning, part of the motivation for this work came
from the facilitating synapses reported in the experimental
literature (Markram, Wang, & Tsodyks, 1998), which provides the
feasibility. Also, in return, our proposed mechanism assigns a
specific role regarding the function of such synapses. In a similar
line, we can ask whether the proposed method is biologically
feasible, especially within an individual’s lifetime. Although our
experimentswere done using simulated evolution, it could be seen
as just another optimization process, so there is no reason why
such a delay compensationmechanism can be developed over time
within a single individual’s lifetime.
Finally, we would like to take the discussion further and

speculate on the role of prediction in brain function. Prediction
is receiving increasing attention as a central function of the
brain (Hawkins & Blakeslee, 2004; Llinás, 2002) (also see Werbos
(2009)). The brain is fundamentally a dynamical system, and
understanding the dynamics can lead to deep insights into the
mechanisms of the brain. For example, according to Kozma and
Freeman (2009), the brain state trajectory transitions back and
forth between chaotic high-dimensional attractors to periodic
low-dimensional attractors. An interesting property of these two
different attractors is that for the chaotic attractor, predicting the
future state in the state trajectorymaybe difficult compared to that
of the periodic attractor. Such predictive function could form an
important necessary condition for more complex and sometimes
subjective phenomena as consciousness or self-awareness (Kwon
& Choe, 2008). It could also be thought of as the ‘‘unconscious’’
process discussed in Gazzaniga (1998) that drives brain function,
that is later confirmed or described by consciousness, post hoc.
Prediction can also be useful in other ways, including predicting
the upcoming input, based on the current model of the world
(Perlovsky, 2009). This kind ofmechanism, coupledwith emotional
circuits (e.g., Levine (2009)), could serve as a fundamental
component in goal-directed behavior. In sum, how such humble
delay compensation mechanisms as presented in this paper can
develop into a fully functioning predictive system, laying the
foundation for high-level cognitive processes, is an important
future question to be addressed.
6. Conclusions

In this paper, we proposed an improved facilitating dynamics,
NDPIA, to address shortcomings in the previous FAN model. We
showed that our approach overcomes the limitations and results
in higher performance in a standard 2D pole-balancing task, with
longer delay in the input during the entire duration of the task.
More importantly, we have found that facilitating dynamics is
the most effective in motor neurons, and increasing input delay
leads to higher utilization of facilitating dynamics. Our findings
are expected to help us better understand the role of facilitating
dynamics in delay compensation, and its potential development
into prediction, a necessary condition for goal-directed behavior.
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