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ABSTRACT

Knife Edge Scanning Microscopy (KESM) is a high-throughput
imaging technique used to obtain large-scale anatomical in-
formation (⇡ 1cm3) at sub-micrometer resolution. Data
acquisition has been fully automated, however significant
post-processing and reconstruction must be done manually.
KESM is unique in that illumination and tissue sectioning
are performed using a diamond knife. Therefore many of
the physical forces applied to the knife (e.g., vibration, slip,
and light refraction) manifest as image artifacts and must be
removed in post-processing. In this paper, we propose a fully
automated framework to extract valid data from imaged sec-
tions and remove lighting artifacts, allowing reconstruction
of the volumetric structures in multiple terabyte-scale data
sets.

Index Terms— Knife-edge Scanning Microscopy, KESM,
serial sectioning microscopy, noise removal, cropping

1. INTRODUCTION

The Knife Edge Scanning Microscope (KESM) is a high-
throughput instrument used for sectioning and imaging large
tissue blocks at sub-micrometer resolution (Fig. 1) [1]. While
previous work has shown that data throughput can be im-
proved using automation [2], much of the required post-
processing and reconstruction must be done manually. In
data sets exceeding several terabytes per specimen, this pro-
cess can be extremely time-consuming.

Two major post-processing steps are required to recon-
struct a KESM volume. First, valid tissue data in raw KESM
images must be located and extracted. Second, lighting arti-
facts inherent to the imaging process must be removed.

In this paper, we propose fully automated methods for re-
gion cropping and artifact removal. We use our methods to
process two data sets (⇠ 2 TB each) representing the whole
mouse brain at sub-micron resolution in all three dimensions.
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Fig. 1. Knife-Edge Scanning Microscopy. (a) Specimen is
undergoing sectioning by the KESM. Diamond knife colli-
mator supports transmission illumination. (b) A full view of
the KESM. (1) Microscope and camera assembly, (2) knife
assembly, (3) the stage, and (4) white light illuminator.

By using the proposed methods, we show that volumetric data
from KESM image stacks can be clearly examined and ana-
lyzed to obtain high-resolution structural detail for volume
sizes that are very hard to obtain using standard microscopy.

2. AUTOMATIC CROPPING

KESM operates by simultaneously cutting and imaging
blocks of tissue into sections that are typically 0.6 to 2 mm
wide [2]. The raw sections are arranged into neighboring
stacks (⇡ 9, 000 in each stack) that must be assembled to
create the final volume. Since it is virtually impossible to
precisely align the optics such that a tissue section occupies
the exact field-of-view of the objective, each image contains
spurious data that must be properly removed. The images can
then be aligned with their neighbors into a mosaic represent-
ing a cross-section of the data set.

2.1. Image Chunk Misalignment

By design, KESM does not require image registration since
each section is imaged before significant deformation can oc-
cur. However, small perturbations in knife position can cause
misalignment of images in a single stack. This occurs any



Fig. 2. Cropping by template matching. (a) An example of a
captured image. (b) Part of an image shows the tissue width.
(c) Sliding template (100 ⇥ 50).

time that the knife is moved due to misalignments between
cutting sessions, power outage, maintenance, etc.

These misalignments can occur hundreds of times while
imaging a single specimen, making cropping a time consum-
ing manual job for data sets that can exceed several terabytes.
We first describe an automated method for locating tissue re-
gions in raw images using template matching based on the
sum of the difference [3]:
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The left edge of the tissue is low-contrast and difficult to
detect, however the right edge (at the knife corner) shows a
clear difference between foreground (tissue) and background
information. The start position of the template in the raw im-
age is the minimum value of d(x, y) (Eq. 2), where the small-
est difference exists between the template and the image.
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Thus, the x start position of the tissue area can be calcu-
lated by Eq. 3
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where W is the width of the region containing data.

3. KESM VOLUME NOISE

KESM exhibits several types of imaging artifacts that degrade
or distort the acquired volumetric data. Many of the artifacts
in KESM imaging are caused by lighting irregularities, pri-
marily due to the use of the knife edge as a collimator/light
source as well as a cutting device. These irregularities are

caused by several factors, including the refraction of light
through the knife (an imperfect lens) as well as physical de-
fects (chips, nicks) in the knife edge and surface. In addition,
uniform illumination across the knife edge would require per-
fect alignment of the optics, which is impossible at the tol-
erances required for high-throughput imaging. These errors
cause uneven illumination in an image along the horizontal
direction.

3.1. Irregular Lighting Artifacts

Possible sources of defects are as follows: (1) non-uniform
illumination across the knife edge (caused by refraction and
misalignment of the optics), creating intensity irregularities
across the width of the image. (2) Fluctuation in illuminator
power. (3) Different exposure time due to changing cutting
velocity [4].

This final source of artifacts results from randomizing cut-
ting velocity, which is used to reduce knife vibration artifact.
This technique of changing velocity to suppress chatter has
been addressed in the literature [4] and results in global in-
tensity shifts from image to image.

The most widespread artifact in KESM imaging is caused
by extreme lighting irregularities and knife chips. These arti-
facts result in a loss of information in the affected region.

3.2. Image Processing Techniques

We specifically focus on image processing techniques that use
local information so that the processing can be run on het-
erogenous systems in parallel. Parallelism in data processing
is important for dealing with large, multi-terabyte volumes.
Local smoothing is often used to remove high-frequency
noise [5]. However, KESM data sets have high-frequence
and low-contrast images. So the smoothing technique cannot
be used for KESM data. Our initial approach is to scale the
pixel values in a line by the average of a small window of
pixels surrounding the current pixel in the line. This method
suffers from uneven equalization in and around excessively
dark or bright areas. To address this problem, we use median
intensity levels as baseline values, which eliminates artifacts
introduced through processing (Fig. 3).

Our first step is to normalize overall intensity levels within
an image. Each pixel in a row is normalized based on the
median intensity value. The same process is applied for each
column:
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Ī = 8
x

T

X

(8
y

T

Y

(I, y), x) (6)



(a) (b)

Fig. 3. Comparison of the average value baseline method
with the median value baseline one. The proposed method re-
moves white artifacts around foreground objects. (a) Uneven
equalization (see regions pointed by arrows) from the average
value baseline method. (b) Evenly equalized intensity level
from the proposed method.
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p(x, y), and Ī is the normalized image. See Algorithm 1
for more details of the normalization process.

Algorithm 1 Normalization
1: R

max

 MaxRowInImage
2: C

max

 MaxColumnInImage
3: L BaseLineBackgroundIntensityLevel
4: {Do normalize all columns}
5: while y < C

max

do
6: while x < R

max

do
7: p(x, y) = p(x, y)⇥ L/M(R(I, y))
8: {Do normalize all rows}
9: while x < R

max

do
10: while y < C

max

do
11: p(x, y) = p(x, y)⇥ L/M(C(I, x))

(a) (b) (c)

Fig. 4. Selective normalization. (a) An example of exces-
sively dark vertical artifacts (arrow). (b) Foreground objects
(arrows) become too bright. (c) Fixing over-normalization.
Foreground objects (arrows) are properly recovered.

Noise from non-uniform illumination and knife defects
are removed using intensity normalization. However, this is
insufficient when the stripes are excessively dark and cause
data loss. The excessiveness can be determined by the clear

(a) (b)

Fig. 5. Normalization results of India-ink stained mouse brain
vascular/microvascular system. (a) The original images be-
fore normalization. The images have dark vertical lines and
uneven intensities across the horizontal direction. (b) Fore-
ground information in vertical lines are restored and uneven
intensity levels are successfully removed. Mouse brain with
the vasculature stained with india ink is shown.

distinction between intensity levels of background and fore-
ground objects. In other words, the dark stripes are excessive

if the intensity levels of the background are nearly indistin-
guishable from those of the foreground objects. The intensity
levels of foreground objects after normalization based on me-
dian values are even brighter than those of the background in
the original image, meaning that normalized foreground ob-
jects become brighter than other foreground objects (see Fig.
4 (b)).

To address this, we introduce a Selective Normalization

method which maintains the intensity levels of foreground
objects while normalizing those of background objects if the
current background value is excessively dark. The detailed
algorithm is described in Algorithm 2. Table 1 shows the pa-
rameters of the Selective Normalization for both the India-ink
stained vascular data set and the Golgi stained neural data.

Parameter Value
L (baseline background intensity) 150
⌧ (minimum median intensity) 75
! (foreground object factor) 0.8

Table 1. Parameters for Selective Normalization

The foreground object factor, ! determines the threshold
intensity level foreground pixels in excessively dark stripes.
The method can be used for tissue types by adjusting these pa-
rameters according to the characteristics of the images with-
out changing the algorithm.

Fig. 4 illustrates the process of selective normalization.
As shown in Fig. 4 (b), general intensity normalization meth-
ods cause over-normalization. Algorithm 2 shows details and
Fig. 4 (c) manifests the effectiveness of Selective Normaliza-
tion method.



Algorithm 2 Selective Normalization
1: R

max

 MaxRowInImage
2: C

max

 MaxColumnInImage
3: L BaseLineBackgroundIntensityLevel
4: ⌧  MinMedianIntensity
5: !  ForegroundObjectFactor
6: {Do normalize all columns}
7: while y < C

max

do
8: while x < R

max

do
9: if M(R(I, y)) < ⌧ then

10: if p(x, y) < (M(R(I, y)⇥ !) then
11: {pixel belongs to foreground}
12: p(x, y) = p(x, y)
13: else
14: {pixel belongs to background}
15: p(x, y) = p(x, y)⇥ L/M(R(I, y))
16: {Do normalize all rows}
17: while x < R

max

do
18: while y < C

max

do
19: if M(C(I, x)) < ⌧ then
20: if p(x, y) < (M(C(I, x)⇥ !) then
21: {pixel belongs to foreground}
22: p(x, y) = p(x, y)
23: else
24: {pixel belongs to background}
25: p(x, y) = p(x, y)⇥ L/M(C(I, x))

4. RESULTS

We processed two mouse brain three-dimensional images (⇠
4 TB total) using the fully automated methods for region crop-
ping and artifact removal. Fig. 4 shows that Selective Normal-

ization method can fix the over-normalization problem. Fig. 5
shows that our proposed methods can efficiently remove ver-
tical artifacts and uneven inter-image intensity levels. Quali-
tative comparision in Fig. 6 demonstrates the effectiveness of
the proposed methods. The results show that the processed
volumes reveal clear internal connectivity structures.

5. CONCLUSION

Unprecedented amounts of high-resolution images prevent
us from removing artifacts manually or semi-automatically.
We provide a fully automated framework for extracting re-
gions that contain tissue data, correcting stack alignment, and
correcting artifacts resulting from non-uniform intensity and
knife defects. Our approach allows us to turn the KESM data
into a valuable resource for neuroscientists.
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