
Object-focused Risk Evaluation of AI-driven
Perception Systems in Autonomous Vehicles

Subhadip Ghosh, Senior Member, IEEE, Aydin Zaboli, Graduate Student Member, IEEE,
Junho Hong, Senior Member, IEEE, Jaerock Kwon, Senior Member, IEEE

Abstract— One of the primary motivations for autonomous
vehicle (AV) technology is to reduce road accidents compared to
human-driven cars. This necessitates having robust perception
systems to detect and classify objects correctly in real-time
environments. Various factors, including the complexity of the
scene, the type of object, the capability of the perception sensors,
and the performance of AI-based algorithms, can affect its
robustness. Furthermore, vulnerabilities in these factors can be
exploited as cyber-physical attacks. Hence, this paper presents a
novel mathematical model for system-level risk evaluation of AV
perception systems that incorporates the relevant objects for AV
applications and the machine learning (ML) algorithms used to
detect and classify them. This model is adapted from the ISO/SAE
21434 threat analysis and risk assessment (TARA) model with an
enhancement in impact rating and attack feasibility assessment.
Additionally, a case study for impact rating is demonstrated with
real data from traffic crashes where the most important objects
are impacted. Also, the effect of the robustness of the detection
algorithm on attack feasibility assessment is illustrated with some
AI/ML-based state-of-the-art detection algorithms used in AVs.

Index Terms—Attack, Autonomous Vehicles, Objects, Percep-
tion System, Risk Assessment, Robustness factor, TARA.

I. INTRODUCTION

The high-level working principle of AVs requires perception
of the surrounding environment so that motion planning and
control of driving actions can be performed accordingly. For
this purpose, AVs collect data with perception sensors and
process this data with an AI/ML-based perception algorithm
to extract meaningful information about the scene. However,
a compromised perception system can expose AVs to driving
hazards. Few researchers have demonstrated some cyber-
physical attacks (e.g., sensor jamming and spoofing attacks)
on sensors. Some researchers have focused on adversarial
methods (e.g., perturbation, inference, and data poisoning)
to exploit vulnerabilities in perception algorithms that result
in incorrect classification of traffic signs and objects on the
road [1]–[5]. Thus, a robust TARA method is crucial to assess
the safety and performance risk of AVs when the perception
system is under attack. Traditional threat modeling techniques
for automotive applications primarily focus on electrical and
electronic (E/E) systems with attacker, asset, or software-
centric approaches. However, these methods are not adequate
to capture system-level threats from a compromised cyber-
physical interaction of the perception system [6]. An integrated
TARA framework is proposed after conducting a comparative
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analysis of the AV perception system with the ISO/SAE21434
TARA guidelines and a systems theoretic process approach
known as STPA-Sec [7]. Furthermore, ISO/SAE 21434 is
refined to incorporate the object-centric approach and AI
robustness factor into the mathematical modeling for risk
calculations. The principal contributions of this paper are
articulated as follows:

• An integrated TARA framework introduced customized
for the AV perception systems. Designed to enable a rig-
orous end-to-end assessment of mission risks arising from
security weaknesses in AVs, the framework encompasses
a theoretical basis, a formalized mathematical model,
and preliminary demonstrations of its applicability to the
object (i.e., humans, bicyclists & motorcyclists, animals,
and vehicles) detection process within AV systems.

• Also, a modified methodology proposed for the risk
assessment analysis using real traffic crash data within AV
systems, guided by insights derived from the ISO/SAE
21434 standards. The refinement centers upon enhancing
calculations of impact ratings and attack feasibility for
vulnerable interactions or elements. This is accomplished
through a comprehensive analysis of traditional AV per-
ception system architectures and functions, alongside the
subsequent integration of AI algorithm vulnerability (i.e.,
robustness factor) considerations and the significance of
detected objects within the AV risk assessment frame-
work. Consequently, this refinement yields more precise
and applicable risk evaluations specifically tailored to the
AV domain.

The remainder of the paper is organized as follows: Sec-
tion II states a representation of the integrated threat model
framework. Different level of object-centric evaluation accord-
ing to the risk analysis along with the modified mathematical
modeling are mentioned in Section III. Section IV presents
the results and discussion of based on the impact rating
according to the traffic crash real data and the robustness
factor, integrated in the risk formulations. Finally, this paper
is concluded in Section V.

II. AN INTEGRATED THREAT MODEL FRAMEWORK

This threat model integrates system-centric and asset-centric
approaches to analyze the threats of perception from system
interaction with the environment and from attacks on the
hardware and software components. As shown in Fig. 1,
steps of this TARA model are adapted from the STPA-Sec
method and guidance in the ISO/SAE 21434 standard. In



Fig. 1. An integrated TARA framework.

this framework, analysis starts by defining the AV perception
system and then identifying the losses that are unacceptable
(e.g., loss of life or injury). In the 3rd step, the hazards are
identified that can cause the loss. Then, a model is created
to identify the interaction that can cause the hazard when
compromised. In the next step, corresponding possible causal
scenarios for this unsecure interaction are generated. These
tasks are performed in 4th, 5th and 6th steps. In the 7th step,
the causal scenario is transferred from the system domain to
the attack domain by using the STRIDE method. In the 8th

step, the AI robustness factor is incorporated as an attack
potential factor for attack feasibility assessment, along with
other factors from ISO/IEC 18045. In the 9th step, impacts are
rated for unacceptable losses depending on the types of objects
on the road. In the last steps, risk is managed after considering
the attack feasibility assessment, impact rating, and mitigation
factor to detect and control the risk. In the next section, the
mathematical models for attack feasibility, impact rating, and
risk calculations are discussed in detail.

III. OBJECT-CENTRIC RISK EVALUATION MODEL

The assessment of risk levels involves a comparative anal-
ysis between the severity of possible damage scenarios and
the exploitable attack vectors. The likelihood of an attack
path is quantified by attributing numerical values to each con-
tributing factor, such as specialist expertise (SE), knowledge
of the time or component (KoIC), equipment (Eq), elapsed
time (ET), window of opportunity (WoO), and the proposed
robustness factor (RF). Attack potentials are classified into
four distinct categories, each assigned a numerical range from
0 to 3, with 0 representing the most relaxed scenario and 3
indicating the highest level of concern. These parameters are
systematically delineated and expounded in alignment with
the ISO/IEC 18045 standard, specifically for the automotive
industry. According to Fig. 2, SE categorizes attackers based
on their automotive knowledge and technical skills, ranging
from laymen with limited expertise to multiple experts with

Fig. 2. Evaluation of attack potential in compliance with ISO/IEC 18045
parameters.

multidisciplinary knowledge. KoIC describes the accessibility
of target information, from public to critically restricted. Eq
assesses the resources needed for an attack, from standard to
multiple custom-built tools. ET measures the duration required
to execute an attack, which varies from less than a day to over
a month. WoO refers to the time frame in which a target must
be accessible for a successful attack, ranging from unlimited
to difficult access [8]. Lastly, the RF parameter evaluates the
susceptibility of perception subsystems in AVs, considering
both software elements and AI algorithms under normal,
abnormal, and adversarial attack scenarios. This framework
provides a comprehensive view of the factors influencing the
potential for attacks on AV systems.

A. Proposed Integrated Mathematical Modeling for Risk As-
sessment

A novel mathematical model is presented in Eq. (1) for
assessing the risk value in the context of AI vulnerability anal-
ysis, specifically for USecX (RUSecX ). This model, distinct
from previous approaches, incorporates a mitigation factor
(MUSecX ) that accounts for the controllability (CUSecX ) and
detectability (DUSecX ) of attacks, assigning values from 0
to 2 to various levels of these parameters, as illustrated in
Eq. (1) [9], [10]. For example, in case of AV perception,



introducing multi-modal hi-fidelity sensors and robust AI/ML
algorithm validated with exhaustive normal, abnormal and
adversarial scenarios can improve the detectability. Further,
having a real-time response system to take the AV to a
safe state can improve the controllability [11]. The model’s
innovation lies in its consideration of the mitigation factor, a
critical aspect often overlooked in prior research. This factor
plays a pivotal role in gauging the extent to which attacks
can be detected and managed, thereby linking the concepts of
attack types, their controllability and detectability, and overall
risk assessment in a comprehensive framework.

RUSecX =
1 + IUSecX × FUSecX

1 +MUSecX
,

MUSecX = CUSecX +DUSecX .
(1)

This approach also prioritizes various road elements (e.g.,
humans, animals, and vehicles) based on factors such as their
damage severity (SL,USecX ), presence rating (OH,USecX ),
average recovery time (TL,USecX ), and financial loss
(ΓL,USecX ). Additionally, the impact rating (IUSecX ) ranges
from 0 to 3 (low to severe levels, respectively), encompassing
the overall impact of cyberattacks, which can vary across en-
vironmental, financial, and operational safety aspects, defined
as Eq. (2):

IUSecX = SL,USecX ×OH,USecX + TL,USecX + ΓL,USecX

(2)
This method highlights the heightened risk and necessity for
effective risk management strategies. The approach categorizes
risk levels into four intuitive groups, aiding in easier inter-
pretation and application in risk assessments, in which low,
moderate, high, and severe impact ratings can be assigned.
The framework, based on the sum of attack potential values,
establishes a link between these values and the attack feasi-
bility rating (FUSecX ), as outlined in Eq. (3) and depicted in
Fig. 2. The attack potential values, determined by parameters
in Eq. (4), range from 0 to 18 and are categorized into three
groups (i.e., 0-6, 7-12, and 13-18) for better comprehension
of attack feasibility.

FUSecX = max(F ηi

USecX) (3)∑
Vηi = V SE

ηi
+ V KoIC

ηi
+ V Eq

ηi
+ V ET

ηi
+ V WoO

ηi
+ V RF

ηi

for i = 1, 2, 3, ..., n.
(4)

Eq. (4) delineates the correlation among attack potential
parameters, highlighting that basic attack paths (utilizing
standard tools, unskilled attackers, and public information)
have higher possibility of success due to their simplicity.
The complexity and feasibility of an attack path inversely
correlate with the required attack potential degree. The novel
index, V RF

ηi
measures the resilience of ML algorithms (i.e.,

object classification) against typical, abnormal, and adversarial
scenarios. This index effectively assesses the performance of
AVs under attacks, regarding different objects, reflecting the
AVs’ environmental dependence.

IV. RESULTS AND DISCUSSION

A. Impact Rating for Objects from Traffic Crash Data

This section presents the real traffic crash data along with
the calculations for impact ratings for different objects. Ta-
ble I demonstrates the different parameters in impact rating
(IUSecX ) considering humans, bicyclists & motorcyclists, an-
imals, and vehicles involved in car crashes. The real data was
extracted from the Michigan Traffic Crash Facts (MTCF) and
National Safety Council – Injury Facts [12], [13] for crashes
in December 2022 in Michigan State. This data is categorized
based on four groups, including fatal injury, suspected serious
injury, suspected minor & possible injury, and no injury, to
calculate the parameters involved in Eq. (2). The severity levels
are considered severe (3), high (2), moderate (1), and low
(0), respectively, for different objects involved in crashes. The
first parameter, severity, can be calculated for the pedestrians
involved in crashes based on different levels of injuries as
follows:

Severe × Fatal Injury
Total Crash Count

+ High × Suspected Serious Injury
Total Crash Count

+ Moderate × Suspected Minor & Possible Injury
Total Crash Count

+ Low × No Injury
Total Crash Count

= 3× 23

198
+ 2× 37

198
+ 1× 114

198
+ 0× 24

198
= 1.298

Similarly, other severity values can be found for different
objects on the road. Occurrence can be found according
to the total crash count (i.e., 198) for pedestrians divided
by the total crash count (i.e., 198 + 52 + 5907 + 1683 =
7840) for all objects (e.g., 198

7840 = 0.0253) to show the
presence of objects according to the traffic crashes on the
road. This is the same procedure to find other Occurrence
values for different objects. Assume a range of recovery
times within each category including fatal (9 − 12 months),
serious (6 − 9 months), minor/possible (1 − 3 months), and
no injury (0). The average recovery time for each category
using the midpoint can be found. A sample calculation of
the average recovery time (months) for pedestrians can be
23×10.5+37×7.5+114×2+24×0

198 = 4.65 months, and a similar
process can be carried out for bicyclists and motorcyclists,
animals, and vehicle items. Regarding the average costs per
injury category, it is necessary to define the average costs for
each injury category. These can vary significantly depending
on factors (e.g., location, healthcare costs, legal settlements,
and lost wages). Some rough estimates can be mentioned as
follows:

• Fatal Injury: $10, 000, 000 (assuming high cost of life,
medical expenses, and lost wages)

• Suspected Serious Injury: $500, 000 (assuming moderate
cost of medical treatment and lost wages)

• Suspected Minor Injury & Possible Injury: $100, 000
(assuming lower cost of medical treatment)

• No Injury: $0 (assuming no immediate financial loss)

An example of the financial loss calculations based on the
pedestrian object can be represented as follows:



TABLE I
IMPACT RATING PARAMETERS FOR DIFFERENT OBJECTS ON THE ROAD BASED ON REAL TRAFFIC CRASH DATA.

Objects
Severity

(SL,USecX )
Occurrence
(OH,USecX )

Recovery time (months)
(TL,USecX )

Financial loss (M$)
(ΓL,USecX )

Human (i.e., Pedestrian) 1.298 0.0253 4.65 259.9

Bicyclist & Motorcyclist 0.788 0.00663 2.15 25.3

Animal 0.0208 0.753 0.044 22.9

Vehicle 0.191 0.2147 0.48 204.8

• Fatal Injury: 23 pedestrians × $10, 000, 000/pedestrian =
$230, 000, 000

• Suspected Serious Injury: 37 pedestrians ×
$500, 000/pedestrian = $18, 500, 000

• Suspected Minor Injury & Possible Injury: 114 pedestri-
ans × $100, 000/pedestrian = $11, 400, 000

• No Injury: 24 pedestrians × $0/pedestrian = $0

Total Estimated Cost: $230, 000, 000 + $18, 500, 000 +
$11, 400, 000 + $0 = $259, 900, 000

According to Table I, human object category demonstrates
the highest impact rating among objects, according to real
traffic crash data. IUSecX index can be advantageous in terms
of different parameters including damage severity, presence
of different objects on the road, average recovery time after
damage occurrence, and financial loss. According to real
crash data in Michigan State, a thorough analysis of different
objects considering indexes can be carried out. For instance,
even though the occurrence index (OH,USecX ) for animals is
significantly higher than other objects, this object category has
lower average values for severity, recovery time, and the loss.
Also, different level of injuries considered which the most
vulnerabilities have been obtained to humans and vehicles,
respectively.

B. Attack Feasibility Assessment with AI Robustness Factor

The section details three case studies that utilize a modi-
fied formula incorporating an AI robustness factor to assess
attack feasibility. Currently, in the absence of a standardized
robustness metric, the prevailing practice is to gauge AI’s
resilience based on conventional performance metrics amidst
defensive scenarios. ROC curve, accuracy, precision, recall,
and F1-score are some of the common metrics that are used
for evaluating AI performance. In this paper, the performance
metrics provided by the authors are translated to RF factor as
per Figure 2 along with other parameters. For first two cases,
it is assumed that performance of the perception algorithm
is good in normal and abnormal scenarios to highlight the
effect on RF and attack feasibility due to adversarial attacks.
First example is for speed limit sign detection with same
defense model for multiple attacks and the second one is for
object detection under the same attack with multiple defense
methods [14], [15]. These case studies are shown with attack
type, defense method, attack potential and attack feasibility
values in Table II. The third case is presented to show the
comparison of attack feasibility ratings when the defense
method is completely missing for AI perception algorithm
under adversarial attack and performance is poor for abnormal

scenarios. This example is crafted based on the performance
of traffic cone detection in abnormal scenarios [16] and then
assumed perception will be poor under adversarial attack. In
Fig. 3, the a comprehensive risk assessment approach with
an AI robustness factor from our proposed integrated TARA
method is presented. In this approach, potential AI/ML models

Fig. 3. A comprehensive risk assessment based on the AI robustness factor
for AV perception datasets.

for AV perceptions systems can be evaluated against normal,
abnormal and adversarial dataset. For each model AI RF can
be assigned based on Fig. 2 and provided to risk assessment
formula according to Eq. 1. As per our analysis, a decrease in
AI RF enables lower values of SE, ET, and Eq for a successful
attack. As a result, the attack feasibility is high when AI RF is
low. When this is combined with abnormal scenarios, as shown
in Case 3, the cumulative attack feasibility also increases. It
can be interpreted as a higher risk according to Eq. 1. In
Fig. 4, an AI/ML model performance for normal, abnormal
and adversarial scenarios based on different case studies from
Table II is shown as a bar chart for a comparative view. A

Fig. 4. A comparative example of an AI robustness factor evaluation
considering case studies from Table II for normal, abnormal, and adversarial
scenarios.

prediction value near to 0 represents model performance is



TABLE II
ATTACK FEASIBILITY CALCULATIONS FOR DIFFERENT AI ALGORITHMS’ ROBUSTNESS FOR PERCEPTION SYSTEMS.

Case # Attack feasibility assessment Attack feasibility
VET VSE VKoIC VWoO VEq VRF

∑
V

1. 4 3 3 0 4 3 17 Low
2. 1 3 3 0 0 2 9 Moderate
3. 1 3 3 0 0 1 8 High

Case 1 - Attack: poster-printing attack I-FGSM, C&W, Deepfool, JSMA.
Defense method: SVD-based optimal approximation with 5G.
Performance: accuracy score (80%–90%). hence determined as good performance.

Case 2 - Attack: a patch on the back of a truck placed in front of the camera.
Defense method: FPDA, Z-mask, HyperNeuron.
Performance: 0.5–0.6 AUROC. hence determined as poor performance.

Case 3 - Performance for the abnormal scenario is 65.8%.
Assumption 1: For Cases 1 and 2, performance is good in normal and abnormal scenarios.
Assumption 2: For Case 3, performance is good in normal but there is no defense against adversarial scenarios.

not evaluated or shown poor performance and 1 and 2 values
represent moderate and good performance, respectively. It can
be noted that these models have not shown the comprehensive
good results against normal, abnormal and adversarial scenar-
ios as shown in an hypothetical example of ideal robust AI/ML
model on the right side of the chart.

V. CONCLUSION AND FUTURE WORK

The TARA model presented here incorporates the effect
of objects on the road and the robustness of AV perception
algorithms. A case study with humans, cyclists, animals, and
vehicles from traffic crash data demonstrates that the proposed
model embeds object-level granularity while evaluating the
risk of every perception system under an attack. This case
study shows that an assessment of attack feasibility augmented
with an AI robust factor captures the holistic performance
of the perception algorithm under normal, abnormal, and
adversarial scenarios with attack and defense methods. We
believe that both of these enhancements are useful tools to
assess the risk of the AV perception system and evaluate
potential solutions to mitigate the threat. In the future, the plan
is to analyze this model with traffic data for various scenarios
and other combinations of attack and defense methods. Also,
this is our goal to develop the AI/ML models for AV scenarios
which performs close to the robust AI/ML model.
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