
 

iv 

 TRAFFIC SIGN DETECTION IN GAZEBO SIMULATION 
ENVIRONMENT USING YOLOV3 

 
 
 
 
 
 
 
 
 
 

A Dissertation 
Presented to 

The Academic Faculty 
 
 
 
 

by 
 
 
 

Nikhil Prabhu 
 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

MASTER OF SCIENCE IN ENGINEERING in the 
KETTERING UNIVERSITY 

 
 
 
 
 
 
 

Kettering University 
December 2019 

 
 

COPYRIGHT © 2019 BY NIKHIL PRABHU 
 



 v

TRAFFIC SIGN DETECTION IN GAZEBO SIMULATION 

ENVIRONMENT USING YOLOV3 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Approved by: 
 

Dr. Jaerock Kwon, Advisor 
Department of Electrical and Computer Engineering 
Kettering University 
 
Dr. Girma Tewolde 
Department of Electrical and Computer Engineering 
Kettering University 
 
Dr. Diane Peters 
Department of Mechanical Engineering 
Kettering University 
 
 
 
Date Approved:  December 18, 2019 

 



 vi

  



 vii

ACKNOWLEDGEMENTS 

This thesis represents the capstone of my two years of combined academic work at 

Kettering University and my experience. My culminating graduate experience provided the 

opportunity for me to use the knowledge gathered and skill set acquired while at Kettering 

to complete a thesis of this magnitude. 

            Although this thesis represents the compilation of my efforts, I would like to 

acknowledge and extend my sincere gratitude to the following people for their valuable 

time and assistance, for without whom the completion of this thesis would not have been 

possible: 

1. Firstly, I thank God for giving me the strength to get through all the difficulties I 

have experienced. 

2. A special thanks to my family. Words cannot express how grateful I am to my most 

significant influencer “My Idol” my Mother. I cannot Thank you enough for 

supporting me with everything, It would not have been possible for me to complete 

my studies without your love, support, and encouragement. 

3. A great appreciation to my advisor Dr. Jaerock Kwon, Associate Professor of 

Computer Engineering and Faculty Thesis Advisor, Kettering University who 

helped me in every way possible towards the completion of this thesis. 

4. Dr.Girma Tewolde, Associate Professor of Computer Engineering, Kettering 

University. 

5. Dr.Bassem Ramadan Department Head and Professor of Mechanical Engineering 

at Kettering University. 

6. A special thanks to Dr. Scott Reeves, Dean of graduate studies, for his help and 

support during my difficult times. 

7. Lastly, I would also like to acknowledge all the members of MIR lab, Ahmed 

Abdelhamed, Ninad Doshi and Balakrishna Yadav for their valuable time and 

support. 



 viii 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS vii 

LIST OF TABLES x 

LIST OF FIGURES xi 

LIST OF SYMBOLS AND ABBREVIATIONS xii 

Abstract  xiii 

CHAPTER 1. Introduction 1 

1.1 Related Works 4 

1.2 Motivation 6 

1.3 Objectives 7 

CHAPTER 2. Methodology 8 

2.1 Simulation Framework 8 

2.1.1 ROS 8 

2.1.2 Gazebo 12 

2.2 Simulated Environment 15 

2.2.1 Traffic Sign Modelling 17 

2.2.2 Pedestrian Modelling 22 

2.3 Vehicle Model 24 

2.3.1 Simulated Sensors 31 

2.3.2 Vehicle Controller 37 

2.4 Visualization of Environment 39 

2.4.1 Rviz 39 

2.4.2 ROS Launch 40 

2.5 Traffic Sign Detection and Recognition 42 

2.5.1 Darknet and YOLOv3 42 



 ix

2.5.2 Network Parameter Modifications 49 

2.5.3 Data Acquisition 53 

2.5.4 Training for Traffic Sign 58 

2.6 Integration with Gazebo 66 

2.6.1 Darknet_ros 66 

2.6.2 Lateral Control 73 

2.6.3 Speed Controller 80 

CHAPTER 3. Conclusion 84 

CHAPTER 4. References 86 

  



 x

LIST OF TABLES 

Table 1. Configuration values of the network training 53 

Table 2. Total number of images per class for training 55 

Table 3. Table comparing the obtained weights from the training procedure 62 

Table 4. Total number of images per class for testing 63 

Table 5. Performance Metrics obtained with the test data set 64 

  



 xi

   

LIST OF FIGURES 

Figure 1. ROS interface [8] 12 

Figure 2. Mcity Model in the Gazebo 16 

Figure 3. Gazebo model file directory 18 

Figure 4. Stop Sign in Gazebo Environment 21 

Figure 5. Gazebo object panel. 22 

Figure 6. Chevrolet Bolt model in Gazebo. 25 

Figure 7. Vehicle URDF structure 27 

Figure 8. Vehicle model and sensor information 40 

Figure 9. Darknet 53 Network Architecture 45 

Figure 10. Data annotation in Yolo Mark. 57 

Figure 11. Traffic signs recognized in Gazebo 65 

Figure 12. Road Segments for Test Track 75 

Figure 13. Final Test Track 76 

Figure 14. Camera Input (left) and the cropped area(right) 78 

Figure 15. RMSE vs Epochs 80 

Figure 16. Traffic Sign Recognition and Speed Control 83 

 

  



 xii

LIST OF SYMBOLS AND ABBREVIATIONS 

YOLO You Only Look Once 

ROS Robot Operating System 

ADAS Advanced Driver Assistance System 

RADAR 

LiDAR 

CNN 

CAT 

SiL 

HiL 

OGRE 

SDF 

OSRF 

CAD 

URDF 

PID 

ROI 

TP 

FP 

FN 

mAP 

IoU 

RMSE 

Radio Detection and Ranging 

Light Detection and Ranging 

Convolutional Neural Network 

Cognitive and Autonomous Test 

Software in the Loop 

Hardware in the loop 

Object-oriented Graphics Rendering Engine 

Simulation Description Format 

Open Source Robotics Foundation 

Computer Aided Design 

Universal Robot Description Format 

Proportional-Integral-Derivative 

Region of Interest 

True Positive 

False Positive 

False Negative 

Mean Average Precision 

Intersection Over Union 

Root Mean Squared Error 



 xiii 

ABSTRACT 

 Research on the self-driving vehicle systems is constantly increasing. The design 

of an autonomous vehicle system is concentrated on building a robust and efficient 

framework that has the potential to handle dangerous traffic situations. There are many 

systems in place that provide driver assistance in various forms such as lane-keeping, 

collision avoidance, adaptive cruise control, etc. which are attempts to making our roads 

safer to drive on.  This thesis is also an attempt on providing such a framework for 

autonomous driving system, that is focused on road safety. The aim of this thesis is to 

contribute to the autonomous vehicle research community by integrating a system capable 

of detecting and recognizing traffic signs and based on the detection take appropriate 

decisions for easier and safe driving. The framework for this thesis is developed in an open-

source 3D simulator Gazebo. For the traffic sign recognition, I have made use of the You 

Only Look Once (YOLO) object detection system. Unlike most object detection systems, 

YOLO uses a sliding window over several locations within an image, which allows it to be 

extremely fast. These two tools are combined with the help of the Robot Operating System 

(ROS), which is a widely used middleware for robotics research. I have also made use of 

a neural network for training the vehicle for lateral motion control which is based on 

Nvidia's Pilot Net architecture. The framework was developed in the MIR lab at Kettering 

University. This thesis has been developed such that it is very easy to use by any individual 

who is interested in the research of autonomous vehicles. I have provided all the necessary 

requirements, tools, scripts and commands to the smallest detail, which will be needed to 

successfully build this from scratch. Apart from this, the weights obtained from training 

the neural networks, along with the labeled dataset used for training have also been 

provided. The results show that the detection procedure is satisfactory with a precision 

metric value of 0.98. Utmost care has been taken to have real-time deployment, hence all 

parameters have been optimized to make the system capable of running with very little 

computation.



 1

CHAPTER 1. INTRODUCTION 

In the recent years, autonomous vehicles have vastly changed from just being a 

research topic to a goal for every automotive company, advanced driver assistance systems 

(ADAS) is being a necessity for today’s vehicle owners [1]. The possibility of having a 

system that can monitor your surroundings and keeping track of your safety is a must-have 

feature. The autonomous and intelligent systems are no more considered a myth but 

becoming a reality and one of the most vital research areas in the automotive industry these 

days. Such a system that is capable of entirely navigating autonomously in an environment 

and being aware of the surroundings without any human interaction is considered a 

challenging task [2]. 

The automotive industry has already started developing ADAS features for driver 

comfort and safety, making substantial progress towards fully autonomous cars. 

Advancements in technologies such as, Radio detection and ranging (RADAR), Light 

detection and ranging (LiDAR), cameras and their fusion provide a 360-surround view of 

the car, have enhanced the vehicle perception in a huge way. The amalgamation of these 

technologies will ensure extra safety and mobility, which will also play a significant role 

in providing enhanced mobility for children, elderly, disabled, and provides relief to the 

drivers during long journeys. In addition to an increase in driving safety of cars on normal 

busy roads and highways, there has been a lot of increase in driver comfort, thus 

significantly reducing the number of accidents. Even after all these technological 

advancements and reaching a high level of autonomy, there still is a great potential to 

improve driving safety, comfort, and efficiency, before the autonomous vehicles are 



 2

available commercially. Today, many huge universities, major companies, and also 

governments are working with full force to get a fully functional autonomous vehicle. 

Although the goal seems to be close, to have a proof of concept, there needs to be a 

minimum of at least 10 billion kilometers of autonomous driving to get to the stage of mass 

production. Even with 100 vehicles driving 24 hours a day seven days a week, this would 

still need about 225 years of driving [3]. Hence, a significant need for a simulator, that can 

speed up the process of validation of the driving technologies and at the same time reduce 

the costs for the testing is needed. 

Research groups in academia and industry have built their own platforms to 

investigate problems that need to be solved in order to achieve full autonomy. The 

simulated platforms available today present a powerful solution to the issue of testing for 

a huge number of miles as now developers are able to safely and accurately test and validate 

the driving software prior to hardware testing. A simulated test environment is not just a 

virtual road with a virtual car, but it is a detailed and accurate blueprint of the city roads, 

highways, buildings, pedestrians, bicyclists, and any other traffic scenario model that a 

vehicle may encounter. Hence, apart from looking realistic, it also needs to act realistic, 

meaning, it needs to follow the laws of physics. It also must have the ability to simulate 

real-world conditions such as wind, weather, and lighting conditions that vary without any 

proper human predictions. For the virtual car to perform close to the real car, it needs to 

have sensing capabilities just as good as the real car. Hence, the need for realistic sensors, 

that can replicate realistic sensor feeds. The closer the sensor model gets to the real sensor, 

better the results will be obtained for testing the algorithms.  



 3

The purpose of this thesis is to develop a framework for object detection and 

recognition system for autonomous vehicles. All the work towards this thesis is done in the 

MIR (Mobile Intelligent Robotics) Lab, a research lab located at Kettering University. The 

software used for creating the framework is called Gazebo which is an open-source 

simulator, capable of simulating complex robots and environments. Gazebo runs on a 

robust physics engine and allows us to manipulate the physical properties of the models in 

the simulation to recreate urban scenarios. It also has the flexibility to set up and modify 

the sensors to provide signals that can be used to train driving strategies. Robot Operating 

System (ROS), was used as the backbone for communicating with all the vehicle sensors 

and the vehicle controller. ROS provides a distributed computing environment by which 

all communication between components in the system is seamlessly possible. ROS is being 

used by most of the automotive companies for implementing and testing ADAS features 

that contribute to building a fully automated vehicle.  

This thesis also includes procedures for applications of the algorithms created for 

autonomous vehicle testing such as traffic sign detection and lateral control with the use of 

Neural Networks. Over the past decade, there has been significant progress in machine 

learning techniques such as Convolutional Neural Networks (CNN). With CNN it is easier 

to train the vehicle for pattern recognition, which enables the deployment of various safety-

critical systems that are important for autonomous vehicles. In this thesis, I have used CNN 

for both traffic sign detection and lateral control. The CNN takes the sensor inputs and 

provides predicted outputs for signs and steering angles to control the vehicle. A detailed 

explanation regarding the working and implementation of the CNN inside the created 

framework is provided in the further sections.  



 4

1.1 Related Works 

A lot of work is being carried out in the field of autonomous vehicles and most of 

the companies and universities. In this field of research, algorithms are first tested in a 

simulated environment, prior to testing in the real world. Although there are a number of 

tools for simulation of autonomous vehicles, it is very difficult to pick one tool for a 

particular development, as each tool has its own advantage and it is only possible to choose 

the right tool based on the application at hand. Here are a few research platforms, from 

which ideas and inspirations were drawn. 

One of the very famous and prominent platforms for autonomous vehicle testing is 

the CAT Vehicle (Cognitive and Autonomous Test Vehicle) [4], which is an open-source 

SIL (Software in the Loop) modeling and simulation done in Gazebo using ROS. This 

research testbed comprises of a simulated model of Ford Explorer. It is designed to mimic 

the dynamics of the real vehicle. It includes simulated sensors and actuators with 

configurable parameters. It also has the option of multi-vehicle simulation to support 

vehicle to vehicle interaction. Data can be logged for examining scenarios.  

Carla is an open-source simulator developed for autonomous vehicle research [5]. It 

is implemented over the Unreal Engine 4 (UE4). It simulates a simple interface between a 

dynamic world and an agent to interact in the world. The world is composed of all objects 

found in an urban scenario such as buildings, traffic signs, infrastructure, vehicles, 

pedestrians, etc. All objects are of a similar scale and modeled to reflect real-life sizes. It 

allows for flexible configuration of sensors. The number of sensors and the positions can 

be specified by the user. Carla provides a simulation engine to test three approaches to 



 5

autonomous driving, a classic modular pipeline and using deep learning, for imitation 

learning and reinforcement learning. It has various weather settings for testing in various 

weather conditions that the autonomous vehicles may have to perform in.  

Airsim [52] is a similar open-source simulator, which is also built on the Unreal 

Engine, is cross-platform, which supports HiL with flight controllers for drones. It has been 

developed with a goal to serve as a platform for AI research to experiment with deep 

learning, computer vision, and reinforcement learning algorithms for autonomous vehicles. 

The vehicle model provided includes a vehicle as a rigid body with parameters such as 

mass, inertia, coefficients for linear a linear and angular drag, friction, etc. The vehicle is 

exposed to various physical phenomena like gravity, air density, air pressure, and magnetic 

field. 

The dbw_mkz_simulation is an ADAS development kit created by the Dataspeed 

Inc. It predominantly focuses on simulation and visualization of vehicle models in virtual 

environments inside the Gazebo environment [6]. This ADAS kit is developed to test 

autonomous algorithms in SiL (Software in the Loop) and HiL (Hardware in the Loop) 

testing. There are some examples of lane-keeping in the simulated environment with 

multiple vehicle models, but the downside is that the user cannot use their own vehicle 

models and environment or testing as some core modules provided cannot be modified as 

the user requires.  

There are other commercial simulators for autonomous vehicles created by the huge 

companies for research such as Constellation [53] created by Nvidia, Carcraft of Waymo, 

Prescan by Tass international, Carmaker by IPG automotive, etc. These simulation 



 6

software and many others similar to these are developed on top of a very powerful physics 

engines like Unity, PhysX, and the Unreal Engine. These all are excellent tools for testing 

and validation of autonomous vehicle algorithms. The issue with these is an expensive 

license, which cannot be afforded by everyone that is interested in research in the 

autonomous field. Hence, I created this framework, which is easily available to all and has 

the flexibility to create our own environment and vehicle models. The following sections 

will explain in detail how to design and implement this framework and how to apply it for 

autonomous vehicle applications such as traffic sign detection and lateral control. 

1.2 Motivation 

The introduction reveals the necessity of further research in the field of autonomous 

vehicles. Though there is already significant research completed, there is still scope for a 

lot of advanced research that needs to be done. Keeping this in mind, I decided to contribute 

to the autonomous vehicle research community via this thesis project. The thesis is based 

upon the development of an autonomous vehicle capable of navigating autonomously using 

sensor inputs for perception. The main problem faced in research of autonomous vehicles 

is the lack of a platform for testing algorithms, and this was the main motivation for this 

thesis. Here I aim to provide a complete and effective autonomous solution, that is 

effortless to use and at the same time straight forward for further development. The 

motivation has led me to develop a system fully capable of detecting and recognizing traffic 

signs. I have developed this framework to be flexible enough for building on top of and 

anybody interested in this research will be able to replicate the work and add more value 

to the existing framework. 



 7

1.3 Objectives 

The objective of this thesis is to develop an autonomous vehicle capable of 

recognizing traffic signs and taking actions based on the sign recognized, inside a 

simulation environment. To achieve the objectives, I have broken the thesis into the 

following goals: 

1. Develop a simulation environment to replicate real-world scenarios, including all 

essential elements like roads, buildings, traffic signs, and also moving objects such 

as pedestrians. 

2. Develop a vehicle model in simulation with all the crucial sensors integrated within, 

necessary to achieve autonomous driving. 

3. Develop an object detection and recognition system and provide it with the 

capability of recognizing traffic signs.  

4. Develop a system capable of driving itself autonomously by perceiving its 

environment and taking decisions based on input. 

5. Maintain reproducibility by making the research freely available with proper 

documentation for recreating this work and future development. 

  



 8

CHAPTER 2. METHODOLOGY 

2.1 Simulation Framework 

The start of this thesis is set off with the construction of a framework for the 

simulation environment followed by a vehicle model with all the necessary sensors 

integrated into the vehicle model. This section will explain the details of the framework 

design and the procedures that will help you replicate the software in the loop (SIL) model 

development of such a system. 

Plugins and scripts written in Python and C++ are used in the development of this 

framework. The simulation environment used together with ROS kinetic is Gazebo 9. The 

further chapters of this thesis explain the procedure on how to design and train the object 

detection model and implementing it in Gazebo. Darknet is an open-source neural network 

framework, which is the backbone for the real-time object detection system YOLO. The 

system is trained to detect and recognize traffic signs inside the Gazebo. 

2.1.1 ROS 

ROS (Robot Operating System), is an open-source, meta-operating system for any robotic 

system, regardless of it being in a simulation or real world. It provides the services such as 

hardware abstraction, low-level device control, implementation of commonly-used 

functionality, message-passing between processes, and package management. It also has 

tools and libraries which facilitate the obtaining, building, writing, and running code across 

multiple computers. The reason behind using ROS as middleware to maintain the 

modularity of the perceptions and decision-making modules [7]. 



 9

2.1.1.1 ROS Installation 

The first step in the implementation of this framework is to install the correct 

distribution of ROS. For the purposes of this thesis, the first requirement is the installation 

of ROS Kinetic. The installation process is well documented and mostly straight forward. 

Here’s a summary of the necessary steps. 

1. Setup your sources.list: Set up your computer to accept software from packages.ros.org. 

  $ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > 

/etc/apt/sources.list.d/ros-latest.list' 

2. Set up your keys: Before installing the ROS packages, you must acquire their package 

authentication key 

  $ sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key 

C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654 

3. Update the Linux environment: Make sure your Debian package index is up-to-date for 

proper installation. 

  $ sudo apt-get update 

4. Installing the ROS packages: Now finally the ROS software can be installed. The 

simplest approach is to perform a complete install of the core ROS system: 

  $ sudo apt-get install ros-kinetic-desktop-full 



 10

5. Initialize rosdep: Before you can use ROS, you will need to initialize rosdep. rosdep 

enables you to easily install system dependencies for the source you want to compile and 

is required to run some core components in ROS. 

    $ sudo rosdep init 

   $ rosdep update 

6. Environment setup: It's convenient if the ROS environment variables are automatically 

added to your bash session every time a new shell is launched: 

   $ echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc 

    $ source ~/.bashrc 

2.1.1.2 Basics of ROS 

The basic principle of a robot operating system is to run a great number of executables in 

parallel that need to be able to exchange data synchronously or asynchronously [8]. The 

following are terminologies used to describe the working principle of the ROS framework. 

1. Node: A node is an instance of an executable. It uses ROS to communicate with other 

nodes. A node equates to a sensor, motor, processing or monitoring algorithm, and so on. 

Every node that starts running registers itself to the Master. 

 2. Master: Provides naming and registration services to the rest of the nodes in ROS, 

facilitating communication. Master makes it possible for nodes to find each other and 

exchange data.  ROS master is started by the command $ roscore.  You should allow the 

master to continue running for the entire time that you’re using ROS. 



 11

3. Topic: A topic is a data transport system based on a subscribe/publish system. Nodes 

can publish messages to a topic or can subscribe to a topic to receive messages. One or 

more nodes can publish data on a topic, and one or more nodes can read data on that topic. 

Data is exchanged asynchronously by means of a topic and synchronously via a service. 

This notion of an asynchronous, many-to-many bus is essential in a distributed system 

situation. 

4. Message: A message is a compound data structure used for publishing and subscribing 

to a topic. A message may comprise of a combination of primitive data types of character 

strings, Booleans, integers, floating-point, etc. Messages are a recursive structure. The 

message description is stored in package_name/msg/myMessageType.msg. This file 

describes the message structure. 

5. Services: A service is for synchronous communication between two nodes and is a bi-

directional channel between nodes. One node sends information to another node and waits 

for a response. Information flows in both directions. Service calls implement one-to-one 

communication. Each service call is initiated by one node, and the response goes back to 

that same node. The description of a service is stored in 

package_name/srv/myServiceType.srv. This file describes the data structures for requests 

and responses. The interfaces in ROS can be seen in Figure 1. 



 12

 

Figure 1. ROS interface [8] 

2.1.2 Gazebo 

The Gazebo is an open-source 3D simulation software, which is mostly used to test 

new code or new physical systems that may be too dangerous or expensive to test in the 

real world. Gazebo is a very useful tool as it gives you the capability to simulate robots 

accurately through defining the robot joint and links. Joint [11] is a point which is 

connecting two links, where links are the actual robot parts. Gazebo allows for testing of 

complex systems regardless of it being robotic or otherwise. It has many uses, including 

testing the dynamics of a control system before the system has been actualized.  

Gazebo is supported by the ODE [12] Physics rendering engine. ODE is a high-

performance library for simulating rigid body dynamics written in C/C++. Gazebo 

performs simulations with a high degree of fidelity and a decent graphical rendering 

feature. It uses Object-Oriented Graphics Rendering Engine (OGRE) [13], for rendering 

graphics. It allows the manipulation of aesthetic attributes, like geometric orientation, 



 13

lighting, etc. One of the most important aspects of Gazebo is that it allows the manipulation 

of the real-time factor, meaning, it allows the simulation to speed up or slow down. The 

procedure to install Gazebo is as follows: 

1. Start with Setting up your computer to accept software from packages.osrfoundation.org 

   $ sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable 

`lsb_release -cs`       main" > /etc/apt/sources.list.d/gazebo-stable.list 

 2.  Setup keys for system to accept Gazebo package  

     $ wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add - 

 3. Update the Linux environment to make sure your Debian package index is up-to-date 

for proper installation 

 $ sudo apt-get update  

4. Install Gazebo using the command 

 $ sudo apt-get install gazebo9 

5.     Check your installation by executing, 

$ gazebo 

In order to be able to modify or create an environment, it is important to understand 

the file format that is used in Gazebo. Gazebo makes use of various file formats such as 

world file, SDF file [14], and URDF file [16]. Each of these files contains the necessary 



 14

information for describing the components of the simulation. I have provided a brief and 

short explanation of these files and their usage in this section. 

  A world description file contains all the elements existing in the simulation 

environment such as traffic lights, traffic signs, pedestrians, buildings, roads, and weather 

conditions, lighting conditions, etc. The world file is formatted using the file extension of 

.world. It follows a Simulation Description Format (SDF), which is written in XML format. 

The world file is read and executed using the Gazebo gzserver [15]. The gzserver is the 

component of Gazebo, which is responsible for the physics update loop and sensor data 

generation. It is considered the core of Gazebo. It has a counterpart, Gazebo gzclient, which 

provides a graphical user interface and visualization of the simulation. It also provides 

controls for the simulation properties. Together these two components make it possible to 

build and run robust and realistic simulations.  

  The file for performing simulation for robot models is the Universal Robot 

Description Format, or URDF. This file is also written in the XML format and is used 

heavily in ROS for simulation and testing. It is a supported file type for Rviz [17] and other 

ROS tools. The file is a tree structure of child links (like vehicle wheels and robot arms) 

connected to parent links (like the chassis and robot body) by a series of joints. This file is 

a description of how your system moves internally, and this will determine how it can 

interact with the environment. The capabilities of the file, however, are limited in 

comparison to the SDF. The SDF files are what Gazebo uses when performing simulation, 

and in fact, before importing one of the URDF models, Gazebo will convert it into an SDF. 

This file format includes more details like friction, damping, and environment properties 

like heightmaps and lights that are excluded from the URDF file [18]. For simplicity, most 



 15

of the objects existing in the world file are created in a separate model files. These model 

files are also written in SDF format. The purpose of having separate model files for each 

object is that it facilitates model reuse between different projects. There is a database 

available online for most of the gazebo models [19], that can be used to create a simulation 

environment. 

Apart from these advantages, Gazebo is capable of simulating sensors, with the 

help of plugins. These plugins are a set of codes that help us to control the robot models, 

sensors, world properties, and even the way Gazebo simulation is performed [20]. A set of 

ROS packages named gazebo_ros_pkgs enhances the capacity by integrating Gazebo with 

ROS [21], making it highly suitable for robotic and autonomous applications. 

2.2 Simulated Environment 

The simulation is created to replicate urban layouts. The users will be able to use the 

environment as if they were inside an actual city layout. The simulation environment was 

adopted from a package named car_demo [22], which was created by the Open Source 

Robotics Foundation (OSRF). For the purposes of this research, I have made some 

modifications to the original package. These modifications are such as the addition of 

traffic signs, traffic lights, pedestrians, etc. Even the roads were modified by adding 

different lane markings. In Figure 2 shows a view of the simulated environment inside 

Gazebo. 



 16

 

Figure 2. Mcity Model in the Gazebo 

The process of modification begins with the creation of objects that will be 

imported into the simulation. In my case, I have created various road networks, traffic 

signs, etc.    Each object was created with a separate file to maintain reproducibility. As 

mentioned in the earlier section, these files need to be in an SDF format. The SDF contains 

simulation details for the objects in the form of tags such as inertia, visuals, collision, etc. 

Most of these are self-explanatory as the SDF is a human-readable language. The main tags 

used for our purpose are, <visual>, <collision> tags. The <visual> tag defines how the 

object looks. This basically specifies the model shape and size. The <collision> defines 

how it interacts with other objects, robot models, meaning, if I want to create a scene with 

a vehicle crashing an object, then I need to specify the collision so that the simulator can 

interpret this information and apply the underlying physics engine and make the crash look 

realistic. Without this collision tag, the vehicle will just pass through the object. The SDF 

provides us with the ability to be very detailed, as there are tags such as <surface>, 



 17

<shader>, <inertia>, etc., which represent the friction of the object model, the light 

reflectivity, and the center of mass respectively. For the purposes of this thesis, I have 

decided to keep the models very basic and simple and hence I have only used visuals and 

collisions.  

Upon creation of the SDF files, these will be added into the world file, inside which all the 

simulation features will be specified. This world file contains a complete definition of the 

environment. It specifies all simulation features, such as the lighting conditions, ground 

plane texture, wind, etc. In the next section, I have explained in detail how to create a model 

to use in Gazebo. 

2.2.1 Traffic Sign Modelling 

In this section, I will provide the steps required to model a traffic sign. The example 

shown here is for the creation of a stop sign. The first step in creating a stop sign for the 

Gazebo simulation is to create a 3D computer-aided design (CAD) model of the desired 

object. The CAD model is a complete description of the shape and size of the object. I 

completed the CAD design inside SolidWorks [23]. Once the CAD model ready, it needs 

the addition of surface texture to the model. I have made use of a software called Blender 

[24] for this reason. The texture is where the model gets proper visualization. Here it allows 

the addition of stop sign image, the surface texture and other details such as reflectivity, 

exposure, etc. I have used a tool called the UV editor, provided inside the Blender software 

to accomplish the task of adding textures. Upon completion of texture editing, the object 

model is exported in a COLLADA file format, which has a .dae extension. The reason for 

using this file format is easy compatibility with Gazebo. 



 18

Now that the model is textured and ready for use, it is required to create some 

folders and files that are specific to Gazebo simulations. This is due to some basic 

conventions kept in place by the Gazebo software, which are a necessity for the model to 

be accepted. Gazebo requires a specific directory to hold the model file, the material file, 

and the configuration file. The model directory can be seen in Figure 3. 

 

Figure 3. Gazebo model file directory 

The COLLADA file(.dae) exported from blender is saved inside the 

traffic_signs/catkin_ws/src/car_demo/car_demo/models/stop/meshes directory. The 

corresponding image file, that defines the texture is placed inside 

traffic_signs/catkin_ws/src/car_demo/car_demo/models/stop/materials/textures directory. 

Next, step is to create two files, the model.config file and the model.sdf file.  



 19

The model config file contains information about the model name, author name, 

description and most importantly the version. I have provided the contents of the model 

config file below. 

<?xml version="1.0"?> 

<model> 

  <name>speed_10</name> 

  <version>1.0</version> 

  <sdf version="1.5">model.sdf</sdf 

  <author> 

 <name>mir lab</name> 

    <email>@kettering.edu</email> 

  </author> 

  <description> 

   Stop Sign model 

  </description> 

The model SDF file, as explained in the previous section and mainly contains visual 

and collision information. Here I have provided a sample of the model SDF file. 

<?xml version="1.0"?> 

<sdf version="1.5"> 

  <model name="stop_sign"> 

 <link name="link">  

   <collision name="collision"> 

     <geometry> 

       <mesh> 

         <scale>1 1 1</scale> 



 20

        
 <uri>model://stop_sign_gazebo_model/meshes/stop_sign.dae</uri> 

       </mesh> 

     </geometry> 

   </collision> 

   <visual name="visual"> 

     <geometry> 

       <mesh> 

         <scale>1 1 1</scale> 

        
 <uri>model://stop_sign_gazebo_model/meshes/stop_sign.dae</uri> 

       </mesh> 

     </geometry> 

   </visual> 

 </link> 

  </model> 

</sdf> 

Both these files need to be placed inside, 

traffic_signs/catkin_ws/src/car_demo/car_demo/models/stop directory. In Figure 4, shows 

how the stop sign looks inside the Gazebo environment.  Following these conventions 

provided here is not only mandatory but also makes it easy to better understand the model 

and at the same time makes it very convenient to modify existing models or add new 

models. Any object model can be designed in Gazebo using these exact steps and following 

these conventions. 



 21

 

Figure 4. Stop Sign in Gazebo Environment 

Once all the objects are created successfully added in the proper directory, the 

objects will be reflected in the gazebo models list under the Insert tab, on the left side panel 

as seen in Figure 5. From here the objects can be simply dragged and dropped to model the 

simulation environment as desired. This feature is very convenient when it is needed to 

design a large city model. 



 22

 

Figure 5. Gazebo object panel. 

2.2.2 Pedestrian Modelling 

There is a wide variety of Gazebo models available for download from the ORSF 

website and these include traffic lights, walking/standing pedestrians, SUV, houses and 

many more. These can be added to our simulation in a similar fashion described in the 

Traffic sign modeling section. Once the objects have been successfully added, it is easy to 

move the objects around. This section will explain how this can be achieved. For modeling 



 23

moving objects in the gazebo environment, such as a pedestrian, the trajectory of the 

moving object needs to be specified, within the world file. For better understanding, I have 

provided a snippet of the world file containing a moving pedestrian below. 

<actor name="actor1"> 

   <plugin name="actor_collisions_plugin"  

filename="libActorCollisionsPlugin.so"> 

     <scaling collision="LHipJoint_LeftUpLeg_collision" scale="0.01 
0.001  

0.001"/> 

     <scaling collision="LeftUpLeg_LeftLeg_collision" scale="8.0 8.0 
1.0"/> 

     <scaling collision="LeftLeg_LeftFoot_collision" scale=" 8.0 8.0 
1.0 "/> 

   </plugin> 

   <skin> 

     <filename>walk.dae</filename> 

     <scale>1.0</scale> 

   </skin> 

   <animation name="walking"> 

     <filename>walk.dae</filename> 

     <scale>1.000000</scale> 

     <interpolate_x>true</interpolate_x> 

   </animation> 

   <script> 

     <loop>true</loop> 

     <auto_start>true</auto_start> 

     <trajectory id="0" type="walking"> 



 24

          <waypoint> 

         <time>10.000000</time> 

         <pose>-116.363 -196.789 0.316128 0 0 -0.00514</pose> 

            <waypoint> 

         <time>11.500000</time> 

         <pose>-116.363 -196.789 0.316128 0 -0 1.57</pose> 

       </waypoint> 

       <waypoint> 

         <time>11.500000</time> 

         <pose>-116.363 -196.789 0.316128 0 0 -0.00514</pose> 

       </waypoint> 

     </trajectory> 

   </script> 

 </actor> 

Waypoints can be provided for the pedestrian under <trajectory> tag in the world 

file. Here it is seen that the pedestrian, named as actor1 has been added in a time loop, with 

a fixed trajectory. The <time> tag sets the time it will take to reach each waypoint. I have 

also added other properties such as collision so that the crashes are realistic, and vehicle 

does not pass through the pedestrian. This method can be used to move any object, such as 

a car, bike or truck. 

2.3 Vehicle Model 

As discussed earlier, I require a vehicle model with integrated sensors in order to 

achieve autonomous driving. The car_demo package taken from the OSRF’s model 

repository comes along with a simulated model of the Toyota Prius. For this thesis, I have 



 25

converted this model into a Chevrolet Bolt. The reason behind conversion is to make this 

framework usable by the Kettering University students involved in Auto Drive Challenge 

[25]. The vehicle model can be seen below in Figure 6. The modifications made to the 

Prius model for conversion into Bolt have been described in this section. 

 

Figure 6. Chevrolet Bolt model in Gazebo. 

It is already seen that a world file contains the information necessary for simulating 

an environment. Similarly, for the vehicle model simulation and visualization, A universal 

robotic description format (URDF) model needs to be created. A URDF is written in an 

XML macro language and is referred to as Xacros. This format is widely used in ROS to 

describe robot models. It enables the creation of property and property blocks which can 

be repeated to create similar parts such as wheels. The URDF is structured like a tree, with 

one root link which is usually called the base_link. And other links branch out from the 

root link. These branches are comprised of links and joints. The links define a rigid body, 

which contains the information of inertia, visuals and collision property of the rigid body. 



 26

It can be a simple shape such as a sphere, box, cylinder or a .dae file, which is a COLLADA 

file directly imported as a mesh. All links are joint to the base_link using joints. Joints can 

be of various types like revolute, continuous, fixed, floating, prismatic or planar. The joints 

specify the root link and the branched link connected to it, which are referred to as the 

parent link and the child link. 

The specifications of the car can be changed or manipulated in the URDF file.  In 

order to modify the vehicle model, it is necessary to know a few details about the URDF 

file. These are mainly essential elements enclosed in a tag. These are described as follows: 

1. Link: A link describes the physical characteristics of a part of the model. It contains all 

the aspects necessary to describe the part body such as the model mesh. Usually, parts with 

movable joints are considered as different links. Elements without movable joints are 

grouped under the same link. 

2. Collision: It encapsulates a geometry that is used for checking the interactions between 

two objects. The collision of an object can be a simple shape or a mesh which accurately 

simulates the body geometry. A collision will consume computational resources without 

any needed necessity. A link may contain many collision elements. 

3. Visual: This is a visual description of the part that is described within the link. As 

explained earlier, it is the 3D shape of this link. 

4. Inertia: Inertia describes the dynamic properties of the link, such as mass, rotational 

inertia matrix. This is mainly used when simulating high fidelity physics as it also requires 

a lot of computational resources.  



 27

5. Sensor: This element is used to simulate the sensor in the simulation environment. It 

contains all the properties that are needed to describe the working of a sensor inside a 

simulation. More on sensors will be explained in the Simulated Sensors section. 

6. Joint: A joint is the connecting point between two links, it describes the connection pivot 

between a parent and a child link. It also controls other parameters such as joint limits, the 

axis of rotation of this element. In simple words, joint describes how two parts move in 

simulation. 

7. Plugin: A plugin is a set of codes that can be used to control almost all the elements in 

the simulation. This element is used to monitor and control your model in the simulation 

environment.  

All the above-mentioned elements are put together in a model URDF file. In Figure 

7 shows the structure of the vehicle URDF. 

 

Figure 7. Vehicle URDF structure 



 28

Now that the elements that make up a URDF file are known, I will explain the 

process of importing the vehicle model. The process for importing a vehicle model in 

Gazebo is the same as importing any object model, as it has been already seen in the Traffic 

sign modeling section. The difference is that the files need to be added to the robot 

description directory and, it does not require special configuration and SDF files for 

simulating robot models using URDF. I first created a 3D CAD model, add texture and 

export as a COLLADA file. The meshes along with the textures are placed inside 

traffic_signs/catkin_ws/src/car_demo/bolt_description/meshes/bolt. While the URDF file 

needs to be placed inside the traffic_signs/catkin_ws/src/car_demo/bolt_description/urdf 

directory. The meshes are linked to the robot model inside the URDF by providing the path 

of the directory where the meshes are saved. This is more clearly understood from the 

snippet of the URDF provided below. 

 <link name="chassis"> 

 <visual> 

   <origin xyz="0 0.05 0.05" rpy="1.57 0 0"/> 

   <geometry> 

     <mesh filename="package://bolt_description/meshes/bolt/body.dae"  

   scale="0.064 0.064 0.064"/> 

   </geometry> 

 </visual> 

 <collision name="chassis"> 

   <origin xyz="0.0 0.05 0.625" rpy="0 0 0"/> 

   <geometry> 

     <box size="1.7526 2.1 0.95"/> 



 29

   </geometry> 

 </collision> 

 <collision name="front_bumper"> 

   <origin xyz="0.0 -2.0 0.458488" rpy="0.0 0 0"/> 

   <geometry> 

     <box size="3 1 0.566691"/> 

   </geometry> 

 </collision> 

  </link> 

The above-seen snippet shows how links are defined inside a URDF file. It also 

shows the import of the mesh file. The path to the mesh file is added in the <geometry> 

tag. This enables the URDF file to simulate the part in the simulation. I have added another 

snippet for the same URDF showing the relation between joints and links. 

<joint name="front_right_wheel_joint" type="continuous"> 

 <parent link="fr_axle"/> 

 <child link="front_right_wheel"/> 

 <origin xyz="0.2 0.55 0" rpy="0 0 0"/> 

 <axis xyz="1 0 0"/> 

  </joint>  

In the above snippet, Shows the connection between the parent and child link via a 

continuous joint. Apart from this, it defines the origin of the joint and its axis of rotation. 

Here the connection between the front wheel and the front axle can be seen. Depending 

upon the purpose, any of the following type of joints can be used to establish a connection: 



 30

1. Revolute: A revolute joint is a 1 DOF (degree of freedom) joint that allows rotation about 

a single axis. It can be used to describe an arm or hinge joint. It is capable of multiple 

rotations but allows for joint limitations so that you could restrict the motion to a 90-degree 

arc. 

2. Continuous: A continuous joint rotates around an axis with no boundary conditions It is 

best represented by a wheel, which can rotate continuously.  

3. Prismatic: A prismatic joint is also a 1 DOF linear translating joint. It allows for 

translation along an axis, but not the rotation around the axis. 

4. Fixed: A fixed joint is used when you want a child link to be incapable of movement 

with respect to the parent link. In other words, the link is fixed. The movement is totally 

locked. 

5. Floating: As the name suggests, a floating joint is not directly connected and allows 6 

Degree of freedom movement.  

6. Planar: A planar joint allows movement in a plane perpendicular to a specific axis. These 

types of joints may be used to define the motion of a piston. 

Pay attention when working on the CAD model for the vehicle as to always keep 

the body separate from the wheels. The reason behind this is to maintain proper joint 

movements between each element. For example, if you decided to add the wheel and the 

vehicle body in the same 3D CAD model, you wouldn't be able to see any wheel rotation 

or assign a separate link for the wheels, because it is already grouped on one DAE file. For 



 31

avoiding this error, I have maintained the vehicle body, steering wheel, and the tires, and 

all other movable parts have a separate (.dae) file. 

I have described all the links, joints, necessary elements, the directories where the 

files need to be added and also a brief on how everything is connected together. The 

converted vehicle model (Bolt) is provided along with the original Prius model, which will 

make it easier for the reader to compare how things have changed from the original. The 

next section describes the addition of sensors to the vehicle model. 

2.3.1 Simulated Sensors 

The key to any simulation for autonomous vehicles is the virtualization of the 

sensors used, as all the decision-making is dependent on the sensor feedback. Our vehicle 

model is equipped with different sensors, that exists in most of the autonomous vehicles. I 

have integrated the sensors with readily available plugins that are used to set the parameters 

for each of the sensor models, enabling them to represent the real sensor performance. 

Some of the attributes of these sensors like the frequency, range, the data output can all be 

changed using sensor plugins. The sensor plugins are added to the URDF file. Here, the 

name of the topic, sensor type, range, resolution, etc can be defined. The sensor locations 

can vary depending on the type of car, view angle, the purpose of the sensor, etc. within 

the URDF file. 

2.3.1.1 Camera 

The camera sensor integrated with the vehicle is an eight-bit stereo camera. The 

camera model is already available in the Gazebo model database and can be easily adopted 



 32

into simulation with any modifications needed. I will explain in detail the changes made to 

the default camera provided by Gazebo. The resolution of the camera is 800x800 pixels. I 

have integrated 4 cameras in total, 3 in front and 1 in the back. A camera frame named 

camera link is used to publish the camera sensor messages. The naming changes depending 

on the location of the camera, for example, the front camera is named front_camera_link 

and publishes the sensor messages over the topic /bolt/front_camera/image_raw.  The 

camera plugin used to control the characteristics is called libgazebo_ros_camera.so and the 

plugins are saved inside traffic_signs/catkin_ws/src/car_demo/car_demo/plugins 

directory. Below I have provided a snippet of the URDF file showing the camera 

information. 

<joint name="camera_joint" type="fixed"> 

   <axis xyz="0 1 0" /> 

 <parent link="chassis"/> 

 <child link="front_camera_link"/> 

 <origin xyz="0 -0.7 2.52" rpy="0 0 -1.57"/> 

  </joint> 

  <gazebo reference="camera_link"> 

 <sensor type="camera" name="stereo_camera"> 

   <update_rate>30.0</update_rate> 

   <camera name="center"> 

     <horizontal_fov>1.3962634</horizontal_fov> 

      

     <clip> 

       <near>0.02</near> 

       <far>300</far> 

     </clip> 

     <noise> 

<type>gaussian</type> 

       <mean>0.0</mean> 

       <stddev>0.007</stddev> 

     </noise> 

</camera> 

  
 <pluginname="stereo_camera_controller"filename="libgazebo_ros_cam
era.so"> 

     <alwaysOn>true</alwaysOn> 

     <updateRate>0.0</updateRate> 

     <cameraName>stereo_camera</cameraName> 

     <imageTopicName>/bolt/front_camera/image_raw</imageTopicName> 

     <cameraInfoTopicName>camera_info</cameraInfoTopicName> 

     <frameName>camera_link</frameName> 

     <hackBaseline>0.07</hackBaseline> 

     <distortionK1>0.0</distortionK1> 

     <distortionK2>0.0</distortionK2> 

     <distortionK3>0.0</distortionK3> 

     <distortionT1>0.0</distortionT1> 

     <distortionT2>0.0</distortionT2> 



 34

   </plugin> 

 </sensor> 

  </gazebo> 

The snippet provided above displays all the details of the camera sensor. The pixel 

information is provided in the <height> and <width> tags. The format of the image is in 

RGB format, contained inside the <format> tag. The range of the camera can also be 

changed by setting desired values in the <near> and <far> tags. I have also added Gaussian 

noise to the camera to make it more realistic [26]. The noise is parameterized using standard 

deviation, and all the noise information is contained inside <noise> tag. It can also be seen 

that the most important aspect, that controls the camera, is the plugin. The plugin can be 

manipulated to modify various attributes such as update rate, distortion, camera info topic, 

etc. The camera is connected to the chassis_link via a fixed joint, with no rotation or any 

other type of movement. 

2.3.1.2 LiDAR 

One of the most used vehicle sensors for autonomous driving is LiDAR. I have 

integrated the vehicle model with a Velodyne LiDAR, which is also provided free in the 

Gazebo model database. The process for integration and modification of the LiDAR model 

is similar to the integration of the camera. The Velodyne LiDAR is mounted on top of the 

vehicle and it publishes data at a rate of 10 Hz. The sensor frame is named velodyne_link, 

which is used to publish the LiDAR sensor messages. The sensor information is published 

over the topic, /bolt/center_laser/scan. The LiDAR characteristics is also controlled using 

a LiDAR plugin, and is called libgazebo_ros_block_laser.so. The plugin is saved inside 



 35

the traffic_signs/catkin_ws/src/car_demo/car_demo/plugins directory. All this information 

is contained inside the vehicle URDF file and a snippet is provided below. 

<joint name="velodyne_joint" type="fixed"> 

 <axis xyz="0 0 0"/> 

 <origin xyz="0 -0.7 2.52" rpy="0 0 -1.57"/> 

 <parent link="chassis"/> 

 <child link="velodyne_link" /> 

  </joint> 

<gazebo reference="velodyne_link"> 

 <sensor name='velodyne_sensor' type='ray'> 

   <visualize>0</visualize> 

   <update_rate>10</update_rate> 

   <ray> 

     <scan> 

       <horizontal> 

         <samples>1875</samples> 

         <resolution>1</resolution> 

         <min_angle>-3.14159</min_angle> 

         <max_angle>3.14159</max_angle> 

       </horizontal> 

       <vertical> 

         <samples>16</samples> 

   <resolution>1</resolution> 

         <min_angle>-0.261799</min_angle> 

         <max_angle>0.261799</max_angle> 

       </vertical> 



 36

     </scan> 

     <range> 

       <min>0.055</min> 

       <max>80</max> 

       <resolution>0.01</resolution> 

   </range> 

   <noise> 

       <type>gaussian</type> 

       <mean>0</mean> 

       <stddev>0.1</stddev> 

   </noise> 

   </ray> 

In the snippet above the LiDAR is connected to the chassis_link via a fixed joint 

with a rotation of zero. The update rate of the LiDAR is set to 10 Hz and has a resolution 

of 0.01 m. the Vertical scan has a minimum angle of -3.141 and the and maximum angle 

of 3.14, measured in radians, while the horizontal scan has a minimum angle of -0.261 and 

a maximum angle of 0.261. All angles are measured in radians and are contained within 

the <horizontal> and <vertical> tags. The minimum range is set to 0.055 m and has a 

maximum range of 80 m. To make the LiDAR data more realistic, I have added Gaussian 

noise, just like the camera sensor. These parameters are saved inside the URDF file and 

contribute to the sensor performance. Based on the application needs, changes can be made 

in this file and in turn change the performance.   

 

 



 37

2.3.2 Vehicle Controller 

The vehicle model is now fully equipped with the necessary sensors, the last step 

is to control the vehicle movements. Here I have controlled the vehicle in Gazebo using 

plugins. The type of controller used is a proportional-integral-derivative (PID) controller. 

The PID controller is integrated inside the plugin and I have adopted the default plugin that 

was accompanied with the Car_demo package. This plugin was written to control the Prius 

model, and I have made small modifications to it for controlling our vehicle. The 

modification includes changes to the topics for the throttle, brake, and steering. I have 

created a custom message structure for the topic to publish and subscribe to these values. 

It is created with a name control.msg and saved inside 

traffic_signs/catkin_ws/src/car_demo/bolt_msgs/msg directory. The throttle and brake 

values have a range of 0-1 while the steering values vary from -1 to 1. The Plugin also has 

configurations for keyboard controls for vehicle controls and uses ASCII code [27] for 

keyboard buttons. I have currently configured the controls to run with W, A, S, D set to 

control throttle, left, brake and right respectively. There are other aspects that can be 

controlled such as max speed, max torque within the plugin which have not been modified 

and are set to default. A snippet of the code has been provided below. 

<gazebo> 

 <plugin name="bolt_drive" filename="libboltPlugin.so"> 

   <chassis>chassis</chassis> 

   <front_left_wheel>front_left_wheel_joint</front_left_wheel> 

   <front_right_wheel>front_right_wheel_joint</front_right_wheel> 

   <front_left_wheel_steering>front_left_steer_joint</front_left_wheel_steering> 



 38

   <front_right_wheel_steering>front_right_steer_joint</front_right_wheel_steering> 

   <back_left_wheel>rear_left_wheel_joint</back_left_wheel> 

   <back_right_wheel>rear_right_wheel_joint</back_right_wheel> 

   <steering_wheel>steering_joint</steering_wheel> 

   <chassis_aero_force_gain>0.63045</chassis_aero_force_gain> 

   <front_torque>859.4004393000001</front_torque> 

   <back_torque>0</back_torque> 

   <front_brake_torque>1031</front_brake_torque> 

   <back_brake_torque>687</back_brake_torque> 

   <max_speed>80</max_speed> 

      <min_gas_flow>8.981854013171626e-05</min_gas_flow> 

   <gas_efficiency>0.371</gas_efficiency> 

   <battery_charge_watt_hours>291</battery_charge_watt_hours> 

   <battery_discharge_watt_hours>214</battery_discharge_watt_hours> 

   <max_steer>0.6458</max_steer> 

   <flwheel_steering_p_gain>1e4</flwheel_steering_p_gain> 

   <frwheel_steering_p_gain>1e4</frwheel_steering_p_gain> 

   <flwheel_steering_i_gain>0</flwheel_steering_i_gain> 

   <frwheel_steering_i_gain>0</frwheel_steering_i_gain> 

   <flwheel_steering_d_gain>3e2</flwheel_steering_d_gain> 

   <frwheel_steering_d_gain>3e2</frwheel_steering_d_gain> 

 </plugin> 

  </gazebo> 

  <gazebo> 

<plugin name="joint_state_publisher" 
filename="libgazebo_ros_joint_state_publisher.so"> 

   <!-- <robotNamespace>/bolt</robotNamespace> --> 



 39

   <jointName>rear_right_wheel_joint, rear_left_wheel_joint, 
front_right_wheel_joint, front_left_wheel_joint, front_right_steer_joint, 
front_left_steer_joint, steering_joint</jointName> 

   <updateRate>100.0</updateRate> 

   <alwaysOn>true</alwaysOn> 

 </plugin> 

  </gazebo> 

In the snippet above the name of the modified plugin is seen, the bolt_drive. This 

plugin is saved inside the traffic_signs/catkin_ws/src/car_demo/car_demo/plugins 

directory. All joints have been specified here and are connected to the chassis link. The 

changeable vehicle parameters such as torque, brake torque, max speed, max steer, etc. can 

also be seen. I have left these values unchanged as testing these parameters is the focus of 

this thesis.  Finally, A joint state publisher [28] is used to calculate all the transformations 

between all the defined joints in the URDF. With the help of an ignition math package, that 

provides a library to deal with all the math operations needed for robotics applications [29]. 

The main function of a joint state publisher is to watch the joints; for instance, it was used 

to move all wheels with the same velocity and to main the same frequency between the 

wheels. 

2.4 Visualization of Environment 

2.4.1 Rviz 

Visualization of sensor information is an imperative part of the development and 

debugging process. I have used a tool called Rviz provided by ROS for sensor data 

visualization. It is a very powerful and flexible tool and can be customized depending on 



 40

the application. It provides options to add and delete sensor topics, robot models and 

transformation frames. It also allows to edit sensor properties such as color, resolution, 

update rate, etc. In Rviz the links connecting the vehicle model can be visualized. In Figure 

8 the car model inside Rviz, with all the active sensors displayed is shown. 

 

Figure 8. Vehicle model and sensor information 

In the figure shown above, shows the vehicle model, images form 4 camera and the 

LiDAR scan data. I have provided a custom configuration for Rviz, that displays all the 

camera info and LiDAR scan upon launch. This configuration file named bolt.rviz, which 

is saved inside traffic_signs/catkin_ws/src/car_demo/car_demo/rviz. 

2.4.2 ROS Launch 

I have so far covered all the necessary elements that need to come together to 

simulate the environment, visualize sensors, etc and all the nodes and topics that are needed 

to have these elements running. I would need to open many terminals to start each node 



 41

separately. Fortunately, ROS provides a mechanism for running all essentials using a single 

file called a launch file [30]. Launch files are very common in ROS to both users and 

developers. As they provide a convenient way to start up multiple nodes and a master, as 

well as other initialization requirements such as setting parameters. Launch files have an 

extension .launch and use a specific XML format. The command used to open a launch file 

is roslaunch. I have provided a sample of the launch file below. 

<?xml version="1.0"?> 

<launch> 

  <arg name="model" default="$(find bolt_description)/urdf/bolt.urdf"/> 

  <arg name="rvizconfig" default="$(find car_demo)/rviz/bolt.rviz" /> 

  <param name="robot_description" textfile="$(arg model)"/> 

  <include file="$(find gazebo_ros)/launch/empty_world.launch"> 

    <arg name="use_sim_time" default="true"/> 

    <arg name="verbose" value="true"/> 

    <argname="world_name" value="$(find car_demo)/worlds/mcity_modified.world"/> 

  </include> 

  <node  pkg="robot_state_publisher" type="robot_state_publisher" 
name="robot_state_publisher" > 

    <!-- <remap from="robot_description" to="different_robot_description" /> --> 

    <!-- <remap from="joint_states" to="/prius/joint_states" /> --> 

  <node name="spawn_urdf"  pkg="gazebo_ros" type="spawn_model" args="-param  

robot_description -urdf -x 3 -y -12 -z 0.5 -model bolt"/> 

  <node name="rviz" pkg="rviz" type="rviz" args="-d $(arg rvizconfig)" required="true" /> 

</launch> 



 42

Above seen are the various nodes launched such as Rviz, robot state publisher, etc. 

The launch file also spawns the robot model inside the simulation environment at the 

specified location. I have provided multiple launch files in the directory, 

traffic_signs/catkin_ws/src/car_demo/car_demo/launch. The contents of launch life must 

be contained inside a pair of <lunch> tags. Similarly, all nodes are contained inside <node> 

tag. It will be shown how to use launch files to launch all the packages used in the thesis, 

in the later sections. 

2.5 Traffic Sign Detection and Recognition 

In the previous chapters I have explained the process of creating a simulation 

environment for autonomous vehicles. This section contains the details regarding 

implementation of traffic sign detection and recognition. Here is a detailed description of 

the network architecture, data collection, performance matrix and training. The training 

results and the network performance have also been discussed in this section. 

 

2.5.1 Darknet and YOLOv3 

You only look once (YOLO), which implies that it only takes one glance at an 

image and predicts what objects are present and where they are located. It is a very 

computationally efficient and one of the fastest object detectors, which are the underlying 

reasons for selecting YOLOv3 [31] in our thesis. It is a state-of-the-art real-time object 

detection system, that uses a unified network for predicting bounding boxes and class 

probabilities. YOLO runs the entire network on the image at once without breaking the 



 43

image into regions, making it ideal for use in real-time detection as required in autonomous 

vehicle applications. This object detection system is based on the regression method [32], 

which predicts the classes and the bounding boxes for the objects in the entire image in one 

run of the algorithm. Its network design is inspired by the GoogLeNet [33] model for image 

classification. The base model of YOLO can process images at 45 FPS, while the smaller 

version of the network, the tiny-yolo [34], can process at 155 FPS, at the expense of giving 

up on the accuracy. This smaller version is designed for quicker execution by removing 

some layers from the original neural network used in YOLOV3. The YOLO object 

detection system highly generalizable and performs well with new unexpected inputs. This 

unique quality makes it reliable for using it for the purpose of traffic sign detection as it is 

more likely to give better predictions during bad weather conditions or poor visibility. 

YOLO makes use of the darknet network architecture for training which will be discussed 

in The Darknet Architecture section.  

The major innovation YOLO brought when it came about was the fact that it is 

capable of performing the detections in one go, which is why it is very fast and performant. 

While other approaches usually employ a pipeline of tasks, like passing on the image some 

classifier(s) to detect stuff in different locations and/or utilizing some other added 

methodologies. During this study, several detectors were compared, and it was found that 

the most impressive performance out of all the available detectors were, R-CNN [35], 

Faster-RCNN [36] and YOLO. Most of these detection systems are highly accurate, and at 

the same time fast at detection. The only drawback seen in these detectors is the amount of 

computational power they require. The concept behind, R-CNN and Faster R-CNN, is to 

make use of region of interest (ROI) proposal methods to first create potential bounding 



 44

boxes in an image and then run a classifier on these proposed boxes but for both cases, 

running a classifier thousands of times over an image implies thousands of neural network 

evaluations to produce detections. This demands many computational resources, prevents 

generalization and can introduce a micro-processing-delay, turning the whole system into 

a pseudo-real-time system. What’s more, it needs a post-processing phase to refine the 

multiple bounding boxes, eliminate duplicate detections and rescore the boxes based on the 

number of objects of the scene.  

It is very hard to have a fair comparison among different object detectors. Amongst 

the various object detector types, there are a number of aspects that affect the performance, 

such as the type of network, input image size, training dataset, data augmentation, etc. To 

make matters even worse, the technology evolves so fast that comparison becomes out of 

date very quickly. Hence, for real-life applications, it is best to choose a type of detector 

that suits best for your requirement, making a choice to balance accuracy and speed [37]. 

The goal of this thesis is recognition of traffic signs in Gazebo, which requires a lot of 

computation. Considering these facts, I made a difficult choice and decided to go with 

YOLOv3 for object detection and recognition. 

2.5.1.1 Darknet Architecture 

YOLOv3 uses a variant of Darknet, called the Darknet-53[38], which is the 

backbone of the system. Darknet-53 mainly consists of residual blocks and 53 

convolutional layers. A residual block is a block consisting of a pair of 3x3 and 1x1 

convolutional layers together with a shortcut connection. A full overview of the Darknet-

53 architecture can be found in Figure 9. For the task of detection, 53 more layers are 



 45

stacked onto it, giving us a 106 layer fully convolutional underlying architecture for 

YOLOv3. The network down samples the image by a factor called the stride of the network 

[39], meaning if the stride of the network is 32, then an input image of size 416 x 416 will 

yield an output of size 13 x 13. Generally, the stride of any layer in the network is equal to 

the factor by which the output of the layer is smaller than the input image to the network. 

 

Figure 9. Darknet 53 Network Architecture [38] 

To perform the detection procedure, the system divides the input image into an S x 

S grid and a single convolutional neural network (CNN) predicts simultaneously B multiple 

bounding boxes for each grid cell, their confidence value and their class probabilities for 

each region. The B bounding boxes are weighted by the predicted probabilities and the 

non-maximal suppression technique is applied to fix multiple detections when objects near 

the border of multiple cells are localized by these near-cells. Delving into the Yolo network 

design, its architecture is inspired by the GoogLeNet model for image classification but 

instead of having 22 layers deep CNN, it has 24 followed by 2 fully connected layers. To 

reduce the features space from preceding layers, 1 x 1 convolutional layers are alternated 

between layers. 



 46

In this section, I have only provided a very brief explanation of the network 

architecture, keeping in mind the scope of this Thesis. This should be sufficient to 

understand how the object detection works in YOLOv3. The network architecture has been 

kept the same as changing any layers in the network may result in an unforeseen effect on 

the overall performance, however, I have made some modifications in the training 

parameters. These modifications and the reasons for these have been explained in the 

Training for Traffic Sign section. 

2.5.1.2 Performance Matrix 

Now that the network is designed is known, it is necessary to understand how to 

evaluate the performance of the system. For this, an understanding of the performance 

matrix for the system is needed. Here I have provided the details on the same.  

1. Loss function:  YOLO predicts multiple bounding boxes per grid cell as seen in the 

Darknet Architecture section. YOLO uses a sum-squared error between the 

predictions and the ground truth to calculate loss. The loss function comprises: 

a. Classification Loss: This function calculates the error in classifying an 

object. If an object is detected, the classification loss at each cell is the 

squared error of the class conditional probabilities for each class. 

b. Localization Loss: The localization loss measures the errors in the predicted 

boundary box locations and sizes. Here only count the box responsible for 

detecting the object. We do not want to weight absolute errors in large boxes 

and small boxes, meaning, a 2-pixel error in a large box is the same for a 



 47

small box. To partially address this, YOLO predicts the square root of the 

bounding box. 

c. Confidence loss: This function provides a measure of the objectness of the 

box. And the objectness score is predicted using logistic regression. It is 1 

if the bounding box prior overlaps a ground truth object by more than any 

other bounding box prior. Only one bounding box prior is assigned for each 

ground truth object. 

2. Intersection Over Union: Intersection over union is a metric evaluating the overlap 

of two bounding boxes. It calculates the ratio between the intersection between 

predicted bounding box and ground truth, over their union. This measure helps find 

how accurate the bounding boxes are predicted. 

3. Recall and Precision: Recall is used to calculate how well a model finds all the 

positives and precision measures how accurate the model is, how well does it find 

all the relevant objects. For this, it is necessary to understand what True Positives 

(TP), False Positives (FP) and False Negatives (FN) mean. The True Positives are 

the number of positive observations that were predicted as positive. The False 

Positives are the number of negative observations that were falsely predicted as 

positive and the False Negatives are the number of positive observations that were 

falsely predicted as negative. Recall is the ratio of TP over the sum of TP and FN, 

whereas Precision is measured as the ratio of TP over the sum of TP and FP.   

4. Mean Average Precision (mAP): Mean average precision (mAP) is an object 

detection metric that multiple data sets used to compare different object detectors. 

mAP is calculated by the area under the precision versus recall curve. Thus, mAP 



 48

is calculated by interpolating all points on the precision versus recall curve and then 

calculating the area under the curve.  

5. F1 Score: The F1 score is a weighted average of precision and recall. The F1 score 

a model can achieve will fall in between 0 and 1, where 0 is the minimum and 1 is 

the maximum. The higher the score the better the model performs. 

2.5.1.3 YOLO/Darknet Installation 

As mentioned in the earlier sections, Darknet is a framework to train neural 

networks, it is open source and written in C/CUDA and serves as the basis for YOLO. 

Darknet is used as the framework for training YOLO, meaning it sets the architecture of 

the network. Before training the network for traffic signs, using darknet, check for all the 

prerequisites. The requirements are as mentioned below and can be downloaded from the 

links provided with it 

CMake >= 3.8 (https://cmake.org/download/] 

CUDA 10.0: (https://developer.nvidia.com/cuda-toolkit-archive] 

OpenCV < 4.0: (https://opencv.org/releases.html] 

cuDNN >= 7.0 for CUDA 10.0 (https://developer.nvidia.com/rdp/cudnn-archive] 

GPU with CC >= 3.0: (https://en.wikipedia.org/wiki/CUDA#GPUs_supported] 

Once all the requirements are installed, clone the following git repository, build and 

run darknet from git repository as follows: 

$ git clone https://github.com/AlexeyAB/darknet.git 



 49

$ cd darknet 

$ make 

2.5.2 Network Parameter Modifications 

To train YOLO for traffic signs, the neural network parameters need to change 

according to the data set. First, the configuration of the net was adjusted to the case at hand. 

The first step was changing the batch size from 1 to 64. This variable defines the number 

of samples (images) that will be propagated through the network at each iteration. 

Choosing a batch size number smaller than the total amount of training images has some 

advantages: less memory space is required during the training procedure because the 

network is trained with fewer samples and it is also trained faster because the weights are 

updated after each propagation. On the other hand, the smaller the batch variable is, the 

less accurate the estimation of the gradient will be. By default, a stochastic batch (batch 

size equal to 1) is set but a batch size of 64 deals better with the YOLO architecture network 

[40]. Also, the number of maximum iterations was changed: the max_batches variable is 

set multiplying 2,000 by the number of classes. That is because it is considered that 2,000 

iterations per class are needed to train the network properly. In our case there are 10 classes, 

so 20,000 iterations will be needed in order to train the model. The learning rate is left by 

default: 0.001. After the 80% and 90% of the maximum iterations value the learning rate 

will be adjusted, so the steps variable is set as ‘3800’. Finally, one more change was 

performed. The image resolution was decreased from 412x412 to 224x224 in order to 

increase the precision and to allow the net to detect small objects. I have explained in detail 

the changes made by the Training Parameters in the next section. 



 50

2.5.2.1 Training Parameters 

The network parameters for darknet training is saved in a configuration file. This 

contains a detailed illustration of the block by block network layout. To train for Traffic 

Signs, it is required to configure these parameters to suit the needs, that is to detect and 

recognize traffic signs in a simulated environment. Start by creating an empty file 

traffic_sign.cgf. This file is saved inside the directory /traffic_signs/darknet/cfg. Then copy 

the contents of the file yolov3.cfg to the traffic_sign.cgf configuration file and make the 

changes in the layers and other training parameters such as batch-size, filters, max_batches, 

etc as shown in Table1. Here I have explained the changes made in the traffic_sign.cfg file 

and why these changes are necessary for training of the traffic signs in our thesis. 

Batch size: The training process of YOLO updates the weights iteratively by 

learning from the mistakes it makes during training. It will take a lot of computational 

power and training time if all images in the dataset are used at one iteration to update the 

weights, so a small subset of the dataset is used in one iteration. This is the batch size. For 

our small dataset, I have set ‘batch = 64’. During training, our network generates new 

weights after iterating over 64 images and the training results were acceptable. 

Subdivisions: The training process highly depends on the GPU (Graphical 

Processing Unit) capability and memory. Training process can get crashed if the GPU runs 

out of memory, fortunately, Darknet allows the user to set the subdivision parameter, which 

processes only a fraction of the batch size in one iteration and GPU memory and 

computation is conserved. I have trained traffic signs with ‘subdivisions = 8’. 



 51

Classes: The classes are the number of categories that will be detected. I have 

created 10 different traffic signs for our thesis, so the number of classes is 10. Set ‘classes 

=10’.  

Filters: Filters represent the number of convolutional kernels in a layer. The filters 

depend on the classes and the number of masks, which are indices of the anchors. Since I 

am not making any changes to the number of anchors, the filter size can be calculated by, 

filters= (classes + 5) x3. In this case, filters are 45. Change the filter for each of the 

[convolutional] layers that are seen before all 3 [yolo] layers. Set ‘filters = 45’. 

Momentum: The changes in the weights in every iteration are a result of the 

learning. The rate of change of the weights is dependent on the momentum of the network. 

Extremely large or extremely small fluctuations will result in slower learning. The training 

speed can be improved if it is set to optimum momentum. I have trained with 

‘momentum=0.9’. 

Decay: The decay parameter also controls the rate of change of weights. I have set 

the decay to the default value, i.e. ‘decay = 0.0005’. Decay is mainly used to address the 

case of overfitting in the training.  

Max_batches: To complete the training I need to specify how many iterations need 

to be completed. This can be done by setting the max_batch parameter. For good results, 

the number of iterations should be relative to the number of classes being trained for 

classification. According to the creators of Darknet, it is advisable to train for at least 2000 

times the number of classes. In this case, there are a total of 10 classes, so I trained such 

that a safe number of iterations is reached, with ‘max_batch = 40000’. 



 52

Image parameters: A crucial parameter for training is the size and type of image 

used in the dataset. The input image has width, height, and number of channels. The width 

and height specify the pixel size of the image and the channels are color information. The 

larger the image size, it will take longer to train. I have trained with images of 3-channel 

RGB and size of 224X224 pixels, i.e. I have set ‘width=224’, ‘height=224’ and 

‘channels=3’ 

Learning parameters: The learning rate controls how aggressively the learning takes 

place of the current iteration. At the start of the training, there is very little information 

about the features that the network is learning, hence the learning rate needs to be high and 

as the network starts learning many features, the rate of learning gradually can be gradually 

decreased. I have used ‘learining_rate=0.001’.  

Steps: The steps parameter controls the rate at which the learning rate for the 

training process decreases. Steps represents the number of iterations after which the 

learning rate will change, in our training, I use the default value for steps. Set ‘Steps=3800’. 

There are many other parameters such as scales, burn-in, angle, saturation, etc. 

which can be changed depending upon the need for the training process. Changing these 

parameters sometimes have a significant impact on the way the network learns. All these 

features have been kept default and no changes are made. Table 1 shows the adjusted 

parameters for the configuration used for our training process. 

 

 



 53

Table 1. Configuration values of the network training 

Parameter Value 

Batch size 64 

Subdivisions 8 

Width 224 

Height 224 

Channels 3 

Momentum 0.9 

Decay 0.0005 

Saturation 1.5 

Exposure 1.5 

Hue 0.1 

Learning Rate 0.001 

Max Batches 40000 

Steps 3800 

2.5.3 Data Acquisition 

One of the most strenuous issues that is faced during the training of neural networks 

is getting the right data in the right format. The right type of data means collecting data that 

correlates to the type of training at hand. Since our task was to detect and classify traffic 

signs inside a simulation environment, I needed to have training images that are collected 

from a simulation environment. Hence, I chose to create our own data set. The data for our 

training is collected using the simulated front camera of the simulated vehicle model. 



 54

The images are collected using a python script which saves the camera data using 

OpenCV. To collect the images, launch the world in Gazebo, with all the traffic signs 

placed at different locations as it is seen in an urban environment. Once the world and the 

Vehicle model are launched, run the ros node data_collection.py in a new terminal. The 

python script creates a ROS node. This ROS node subscribes to the camera topic, wherein 

the camera topic publishes the camera image at 30Hz. The script makes use of OpenCV to 

save the ROS images and the images are saved in .jpg format. The rate at which the images 

can be changed inside the python script. I have made use of the timestamp in order to 

provide a distinct name to each image. This script also collects the steering angle of the 

vehicle, but I have commented out this part as I do not require the steering angles to train 

for Traffic sign detection. The steering angle will be used for training the vehicle for lateral 

control and this is explained in the Integration with Gazebo section. The location to save 

the collected images is provided along with the script in the terminal. 

The python script for collection of data is provided in the ROS package which can 

be downloaded from GitHub [55]. The data collection can be achieved by following the 

simple steps provided. 

1. Launch the simulated environment in which I have added the traffic signs.  

$ rosslaunch car_demo mcity_modified.launch 

2. In a new terminal, launch the python script using the following command, 

$ cd catkin_ws 



 55

$ rosrun data_collection data_collection.py traffic_signs/data/nikhil This will run the script 

and save the images. If the folder does not exist a new folder is created with the time 

stamp(yyyy-mm-dd-hh-mm-ss) set as the name inside the path provided. 

3. Drive the Vehicle in the environment, specifically in the regions where the signs 

have been placed to collect the desired images. 

4. Open the folder where the images are saved and delete all the images with no signs. 

Also, delete the duplicates.  

5. Copy the images to traffic_signs/darknet/data/obj 

For better training for classification, the dataset for training must be diverse, containing a 
variety of different types of images. In order to achieve this, the image for the signs 
needed for training was collected at various distances, angles. The vehicle and the signs 
were placed at varying positions in terms of height, skew, etc, to have a diverse set of 
images. The images collected need to be filtered to remove unwanted extra images. The 
images that need to be deleted are mainly duplicates and the images that do not have any 
traffic signs. Then I need to create a text file containing the names of all the images in the 
final dataset. This is explained in detail in the Data Annotation section. The dataset I used 
for training consists of 700~1,000 images per class which gave us satisfactory results for 
traffic sign detection and classification.  Table 2 shows the total number of images 
collected in each class. 
 

Table 2. Total number of images per class for training 

Class Name No. of Images 

Stop Sign 832 

Yield Sign 759 

Pedestrian Sign 812 

Speed limit 5 Sign 703 

Speed limit 10 Sign 710 

Speed limit 15 Sign 823 

Speed limit 20 Sign 809 



 56

 

 

 

2.5.3.1 Data Annotation 

A critical part of training neural networks for classification of any category is data 

annotation. It is simply the task of labelling the data for the learning neural network to 

recognize recurring patterns in the annotated data. The data annotation for our dataset I  

have used 2D bounding boxes, which are imaginary boxes drawn on images along with the 

class information for each image in the dataset. The data annotation for training YOLO 

needs to be in the following format,  

<class-id> <center-x> <center-y> <width> <height> 

The <class-id> represents the class of the object, <center-x> and <center-y> are the 

x and y coordinates of the center of bounding box, the <width> and <height> are the width 

and height of the bounding box.  

There are several tools available for data annotation like ‘LabelImg’, Labelbox, 

BBox-Label-Tool’, ‘Yolo Mark’, Gengo AI, MATLAB Image ground truth labeler, etc., 

The tool used for this thesis is ‘Yolo Mark’ and it is shown in Figure 10. This tool was 

chosen as it saves the label data in the format required by default. To install, build and run 

Yolo Mark from the git repository, perform the following steps:  

$ git clone https://github.com/AlexeyAB/Yolo_mark 

Speed limit 25 Sign 813 

Right Turn Sign 717 

Left Turn Sign 726 



 57

$ cmake . 

$ make 

Yolo_mark requires to have all the images in a specific location. All the images collected 

during the data acquisition must be copied to this folder, 

traffic_signs/Yolo_mark/x64/Release/data/img.  

Next, 3 special files are required. They are of the extension, .data, .names, and .txt. The 

contents of these files will be described in the Training Setup section. 

Finally, run the following command, to open a GUI and start labeling the data. 

$ ./linux_mark.sh 

The annotation using Yolo Mark will generate a .txt file, which is the label file for 

each image in the same directory and with the same name as the image. 

 

Figure 10. Data annotation in Yolo Mark. 



 58

2.5.4 Training for Traffic Sign 

This section particularly deals with training the network to detect and recognise 

traffic signs. It consists of training setup, training process and the training results. Here we 

have also provided all the necessary files and datasets for recreating the results obtained. 

2.5.4.1 Training Setup 

The darknet package that I have used for training YOLO for custom object detection needs 

information regarding the specifications of the data that needs to be trained. These include 

the information about the classes, the names of the classes, training and validation datasets 

along with the relevant path to their locations inside the package. In this section, it is seen 

what these files are, how to create these files and what locations these files need to be 

saved. 

Training and validation list: These files have the list of the files that are to be used for the 

training and validation. It has a similar function to that of a .csv file which is used for 

training most of the neural networks. Here, specify the list of images that will be trained. 

Start by creating an empty text file with the name traffic_sign_train.txt. And save this file 

inside the directory /traffic_signs/darknet/data/obj. Now populate this file with the list of 

images collected and labeled. A sample of the contents of the traffic_sign_train.txt is seen 

below. 

data/obj/2018-12-10-00-16-34-023577.jpg 

data/obj/2018-12-10-00-16-35-032199.jpg 

data/obj/2018-12-10-00-16-36-041377.jpg 

data/obj/2018-12-10-00-16-37-050892.jpg 



 59

data/obj/2018-12-10-00-16-38-060369.jpg 

data/obj/2018-12-10-00-16-39-070252.jpg 

data/obj/2018-12-10-00-16-44-115532.jpg 

data/obj/2018-12-10-00-16-47-141772.jpg 

data/obj/2018-12-10-00-16-50-173511.jpg 

Inside the text file, each line needs to contain the image name along with the path 

to the directory where the images are saved. Failing to do so will lead to image not being 

found for training and it will throw errors. 

Names file: The names file contains the names of the classes for which the detector 

will be trained. I started by creating a file Traffic_sign.names and save it inside the 

directory, /traffic_signs/darknet/data. In this file, I have added all the class names that I 

want to detect in this system. The contents of traffic_sign.names are seen below.  Keep in 

mind that each class name is written in a new line as to not mix-up with the classes. 

stop_sign 

pedestrain_walk 

parking 

right_turn 

left_turn 

yield 

speed_10 

speed_15 

speed_20 

Speed_25 



 60

Data file: The data file provides information about all the necessary requirements 

for the training. It specifies the number of classes and provides the absolute paths for the 

Train list, Validation list, and the Names file. The classes specified in this file must match 

the total number of classes in the Names file. The last line in the data file is the path to the 

backup directory. The intermediate weights generated during the training process are stored 

in this directory.  Start by creating an empty file traffic_sign.data and save it inside the 

directory, /traffic_signs/darknet/data. Now populate the file with all the information 

mentioned above. 

classes= 10 
train  = data/traffic_sign_train.txt 
valid  = data/traffic_sign_train.txt 
names = data/traffic_sign.names 
backup = backup/ 

The last step before the training is to download pre-trained weights for the 

convolutional layer. This can be done using the command, 

$ wget https://pjreddie.com/media/files/darknet53.conv.74 

The pre-trained weights are needed for training even though the weights may not 

contain any information on objects that you are trying to detect. Using a pre-trained model 

from convolutional weights will learn faster during training as it will not have to start 

learning from scratch. These weights need to be saved into the directory 

/traffic_signs/darknet. 

2.5.4.2 Training 

The last step to train is to add the images for the training. These images must be 

added in the directory, /traffic_signs/darknet/data/obj. For training the network, the images 



 61

must be accompanied with the annotation files generated in the Data Annotation section. 

Take utmost care as to not have any missing annotation files, else it may cause errors for 

training.  

Finally, start the training using the following commands: 

$ cd darknet 

$ ./darknet detector train data/traffic_sign.data cfg/traffic_sign.cfg darknet53.conv.74  

For training with mAP(mean average precision) or to save the train.log, add ‘-map’ 

flag or ‘-train.log’ flag along with the command for training. Weights are preset to be saved 

after every 100 iterations in the directory /backup. This allows us to stop training at any 

point and restart it using the latest weights. The training is set to stop after 40,000 iterations 

are completed, but the training can be manually stopped if the average loss(error) does not 

decrease for many iterations. As mentioned earlier the model needs to be trained for 2,000 

iterations per class, but not less than 4,000 iterations in total.  

In my training, I stopped the training manually upon reaching 14,000 iterations, as 

the average loss value was not showing any significant change. They may not be the case 

with other users. The training may have a lot of unknown effects from the type of system 

used, and the type of data used. 

2.5.4.3 Training Results 

Stopping the training process trying to avoid the underfitting or overfitting 

phenomena, is not a trivial task. Darknet’s site details that 2,000 iterations per class are 



 62

usually enough, but if the average loss during the training does not decrease significantly 

between consecutive iterations it should also be considered the training is nearly complete. 

It is also remarked that it is important to get the weights at the Early Stopping Point and in 

order to choose them the last few weights files are compared. This comparison is performed 

by evaluating the validation set previously uploaded and getting the weights file that has 

the highest mean Average Precision (mAP) and the highest Intersection over Union (IoU) 

value. mAP is the mean of the average value of the precision across all recall values and is 

an evaluation metric of object detectors that measures the overlap ratio between the ground 

truth and the predicted boundaries. These are popular metrics to measure the accuracy of 

the object-detection algorithms and have been discussed in the Performance Matrix 

Section. Table 3 shows the results of the evaluations of the 10 created weights files (one 

after every 1,000 iterations) after a total of 22 hours of training. 

Table 3. Table comparing the obtained weights from the training procedure 

Weight Files mAP IoU 

2000 iterations 59.01 51.01 

3000 iterations 67.59 76.32 

4000 iterations 86.23 83.50 

5000 iterations 92.56 85.39 

6000 iterations 98.78 85.67 

7000 iterations 99.04 86.43 

8000 iterations 99.12 86.21 

Taking the results shown in Table 3, the weights file corresponding to the 7000th  

iteration has the highest maP and IoU values. These weights are the chosen ones to perform 

the detection process in the Gazebo simulator. All these weights will be tested on a test 



 63

data set analyzing their performance and other metrics such as the Precision, the recall, and 

the F1-Score. Moreover, True Positives (TP), False Positives (FP) and False Negatives 

(FN) rates are also discussed.  

On completion of the training, apart from mAP and loss, the weights were tested 

on new data to check for results of detection. The testing can be done using the command: 

$./darknet detector test data/Traffic_sign.data cfg/traffic_sign.cfg 

traffic_sign_XXXX.weights 

A test set of 1346 images extracted from Gazebo was created alongside the training 

set. The total number of images added in each set can be seen in table 4. 

Table 4. Total number of images per class for testing 

Class Name No. of Images 

Stop Sign 148 

Yield Sign 129 

Pedestrian Sign 137 

Speed limit 5 Sign 124 

Speed limit 10 Sign 132 

Speed limit 15 Sign 145 

Speed limit 20 Sign 135 

Speed limit 25 Sign 142 

Right Turn Sign 126 

Left Turn Sign 128 

Apart from the mAP and the IoU, there are three more metrics there were chosen 

for evaluation of the weights, to be used in the final package. These metrics were the 



 64

precision, the Recall, and the F1-Score. The precision measure is the ratio of correctly 

predicted positive observations to the total predicted positive observations. The recall 

metric is the proportion of how many of the total amount of positives observations have 

already been correctly predicted as positive. Finally, the F1-Score is a measure used to seek 

a balance between the Precision and Recall, in other words, it is the weighted average of 

these metrics. To get these measures, three rates must be obtained: True Positives (TP), 

False Positive (FP) and False Negative (FN) rates. A comparison of these values is seen in 

Table 5 

 
 
 

Table 5. Performance Metrics obtained with the test data set 

Weight File Precision Recall F1-Score TP FP FN 

2000 iterations 0.74 0.74 0.74 1331 462 470 

3000 iterations 0.82 0.81 0.82 1628 312 223 

4000 iterations 0.88 0.90 0.87 1719 127 96 

5000 iterations 0.92 0.90 0.90 1778 65 34 

6000 iterations 0.95 0.97 0.95 1798 5 4 

7000 iterations 0.98 0.99 0.98 1799 2 2 

8000 iterations 0.98 0.98 0.98 1798 7 9 

The data from the above table shows the results from the metrics which have 

previously discussed. These results were obtained from the weight files produced during 

the training phase. Analyzing these results and the ones obtained in the validation test 

(Table 3), it can be seen how the values regarding the weights file on the 7000th iteration 



 65

are the best ones. This justifies the reason for the weight on the 7000th iteration chosen to 

be integrated into the object-detection system. In Figure 11 shows the traffic signs 

recognized within a bounding box, along with the probability in the class predicted. 

 

Figure 11. Traffic signs recognized in Gazebo 

It is very important to verify the results by applying it where it is needed, and check 

the output. Hence I placed some random traffic signs in front of the vehicle model and 

checked for recognition by feeding the camera image to the network. As it can be seen in 

the above figure, the network is trained very well as it is recognized the yield sign, the stop 

sign, and the speed limit sign and predicts a 100% probability for each. This validates our 

results and brings an end to this section. 



 66

2.6 Integration with Gazebo 

As it was very clearly mentioned in the beginning that the purpose of this thesis was 

to develop a system capable of detecting and recognizing traffic signs. Not only that, I 

intended to provide the ability for anyone to be able to recreate the work done and further 

develop this research. So far, I have shown you the methods to develop all the essential 

elements that are a part of this system. The final step to achieve the goals of this thesis is 

to put together all these elements into one system. This chapter explains in detail, the 

procedure needed to be followed, in order to achieve detection inside a simulation 

environment. 

2.6.1 Darknet_ros 

The heart of this system lies inside the traffic sign detection system. In order to achieve the 

detection and recognition in a  Gazebo simulation environment, I needed a ROS Package, 

that is capable of running the darknet architecture. This is achieved by making use of a 

ROS package called the darknet_ros [41]. This an open-source package that can be readily 

cloned from the GitHub. The following dependencies are needed in order to successfully 

build this package. The links for download are provided: 

1.     OpenCV. [https://opencv.org/] 

2.     Boost. [ https://www.boost.org/] 

The procedure for successfully installing these libraries can be found on the official 

websites for OpenCV [42] and Boost [43]. These are also open sourced and are freely 



 67

available for anyone to download. Once these have been setup, start by building the ROS 

package using the following commands. 

1. Clone and build the darknet_ros package from Github. 

     $ git clone --recursive git@github.com:leggedrobotics/darknet_ros.git 

2. Build the ros workspace including darknet_ros package. 

     $ cd .. 

     $ catkin_make -DCMAKE_BUILD_TYPE=Release 

This Darknet package can be run on the CPU and GPU, but the GPU is about 500 

times faster than the CPU. In order to run the GPU version of Darknet you will require an 

Nvidia GPU and you will have to install CUDA [44]. During the installation process, the 

CMakeList.txt  file will automatically detect for CUDA installation and build for CPU or 

GPU version accordingly. 

2.6.1.1 Detection messages 

As mentioned earlier the darknet_ros is a ROS package developed for object 

detection using YOLO in any system that runs on top of ROS. The package takes the input 

from the camera image of the object detection system. It may be a robotic camera or a 

simulated camera. This is achieved by subscribing to the camera data as a ROS node. In 

this Framework, I have provided the essential knowledge required to publish and subscribe 

to a ROS topic. The darknet_ros package publishes three topics, which contain all the 

necessary information required for detection and recognition. A brief description of the 



 68

information contained in the messages, such as the topic name, message structure, data 

type, etc is provided below. 

1. Object_detector: This publishes the information on the number of objects detected. It 

saves the data type used is a standard ROS of the type integer, std_msgs:: Int8.    

2. Bounding_boxes: This message is a custom-built message which publishes an array of 

bounding boxes that gives information about the position and size of the bounding box in 

pixel coordinates. This message is a struct, and has the following declaration, 

a. string Class; 

b. float64 probability; 

c. int64 xmin, ymin, xmax, ymax; 

Bounding box and its coordinates have already been explained in detail in the Data 

Acquisition section. 

3. Detection_image: This message publishes an image of the detection image including the 

bounding boxes. The data type will be similar to the input of the camera image, 

sensor_msgs:: Image. 

2.6.1.2 Traffic Sign Detection Parameters 

In order to detect our custom objects, I need to provide the weights generated from 

the training. I have already provided the procedure to train for custom objects, and generate 

weights for the custom objects in the Training for Traffic sign Section.  These trained 



 69

weights need to be copied over and placed in the directory: 

catkin_ws/src/darknet_ros/darknet_ros/yolo_network_config/weights/. 

As seen previously in the section on Training Results, I analyzed and compared the 

output from multiple weight files and selected traffic_sign_7000.weight as the best-trained 

weight. I have placed this file into the above-mentioned folder. Along with the weight file. 

The network configuration file is also needed. This configuration file contains the details 

of the network parameters. I need to provide the same network parameters used for training 

to obtain successful detections. For training to detect traffic signs, I made use of the 

traffic_sign.cfg as our network configuration file. The network configuration file needs to 

be placed in the directory: catkin_ws/src/darknet_ros/ yolo_network_config/cfg/. 

Next step is to link the cfg and the weight files to be read by the darknet_ros 

package. Make use of a YAML file [45] for linking. The YAML is a human-readable data-

serialization language which is very commonly used for configuration files. This file 

contains detection related parameters such as the names of the detection classes, network 

configuration file, the weights file, and the threshold value. The threshold value is set 

between 0 and 1 and it determines the minimum probability below which the detections 

will not be displayed, meaning, only the detections that have a probability value over the 

set threshold value will be displayed to the user. In this thesis, I have set threshold value = 

0.95. This file needs to be placed in the directory: 

/traffic_signs/catkin_ws/src/darknet_ros/darknet_ros/config. Create a new YAML file 

named yolo_traffic_sign.yaml and add the above mentioned details in this file. Snippet of 

the yolo configuration YAML file is provided below. 



 70

 

yolo_model: 

  config_file: 

    name: traffic_sign.cfg 

  weight_file: 

    name: traffic_sign_7000.weights 

  threshold: 

    value: .95 

  detection_classes: 

    names: 

      - stop_sign 

      - pedestrain_walk 

      - parking 

      - right_turn 

      - left_turn 

      - yield 

      - speed_10 

      - speed_15 

      - speed_20 

      - speed_25 

2.6.1.3 ROS Parameters 

To run the system in the  ROS it is necessary to set up the basic communication 

requirements in the form of publishers and subscribers. As mentioned in the detection 

messages section, I need to subscribe to the camera topic, in this case I have subscribed to 



 71

/bolt/front_camera/image_raw. This topic is published by the vehicle sensor model and 

contains the image data of the front camera. More camera topics can always be added or 

the camera image can be changed from the front camera to the back camera, depending on 

our application. I will only be using the front camera for our purpose.  

Moving on to the publishers, there are 3 topics published by this ROS package that 

provides the detection information. The published topics are as these: 

1. Object Detector: This topic contains the information on the number of objects 

detected in the Camera, the topic is published with the name 

darknet_ros/found_object. 

2. Bounding boxes: It contains an array of bounding boxes that gives information on 

the position and size of the bounding box in pixel coordinates. The format of the 

topic is taken from the bounding_box message and is already explained in the 

previous section. It is published under, darknet_ros/bounding_boxes. The bounding 

box information can be used to locate the object in the Image frame and further 

used for any application desired. 

3. Detection Image: This is simply the camera topic taken from the vehicle sensor 

being published back along with the bounding box. It basically superimposes the 

camera image, with the bounding box coordinates obtained from the detection. 

subscribers: 

  camera_reading: 

    topic: /bolt/front_camera/image_raw 



 72

    queue_size: 1 

publishers: 

object_detector: 

    topic: /darknet_ros/found_object 

     latch: false 

  bounding_boxes: 

    topic: /darknet_ros/bounding_boxes 

    latch: false 

  detection_image: 

    topic: /darknet_ros/detection_image 

    latch: true 

The topics seen above need to be added into a new YAML file with name  

ros_traffic_sign.yaml, and save this file inside the directory 

/traffic_signs/catkin_ws/src/darknet_ros/darknet_ros/config, along with the Yolo 

configuration file. 

The next step is to create a launch file for launching all the necessary ROS nodes. 

The launch file starts new nodes, starts a master node,  provide the locations for the 

weights file, network config file, YAML file, and also linked it to open Gazebo world 



 73

file where I have implemented the Traffic sign detection. I have provided multiple 

launch fine with different purposes. All the launch files are stored inside the directory, 

traffic_signs/catkin_ws/src/car_demo/car_demo/launch. 

2.6.2 Lateral Control 

Apart from Traffic Sign detection, one of the other objectives of this thesis was to 

make use of the detections and apply it for controlling the vehicle speed. It would not 

be of much use to have object detection and not apply it for any meaningful application. 

Hence, I also worked on Lateral Control [46], so as the vehicle can be justified to be 

Autonomous. There are a lot of ways to achieve autonomy, one such method is by 

providing the vehicle with lane keep assist and programming it to move at any speed 

that it detects on the road signs. 

Now I have all the elements necessary to accomplish our objectives are ready for 

deployment. The final step, as mentioned above, is to achieve lateral control. For this, 

I have made use of a package called Mir_torcs [56], which was created by Prof. Jaerock 

Kown. The concepts underlying this work is based on Behavioral Cloning [47], for 

lateral motion control of autonomous vehicles. This package is open sourced and 

readily available on Github. A link is provided for the same. The work done in 

Mir_torcs is towards lateral control and also speed control and the underlying Neural 

Network is based on NVIDIA’s Pilot Net [48]. The model is designed to learn from 

driver behavior. The network is fed with vehicle camera images, along with the steering 

and throttle values. The network learns to drive autonomously from the inputs provided 

for training. 



 74

Mir_torcs was designed to clone the speed and steering from the driver’s behavior. 

I have made some modifications to the Mir_torcs package to suit our needs. Since only 

need this for lateral motion control, I only provided camera images with corresponding 

steering angles, as the speed will be set based on the specified speed limit as seen on 

the road signs. The certain changes were also made in the network. The reason I made 

these changes is that, in this thesis, I wanted to replicate the exact network architecture 

implemented in the NVIDIA’s Pilotnet. In order to do this, I have deleted the following 

layers from Mir_torcs network architecture as these layers are not part of the PilotNet. 

1. Max Pooling layer 

2. Dropout layer 

After the modifications have been made I can train the network. Since I needed an 

environment with a single lane, I created a new environment in Gazebo. This new 

environment consists of a double lane road. The steps for creating the track, data collection 

and training the network have been provided. 

2.6.2.1 Test Track 

To collect data and train for lateral control, I needed a test track. To create the test 

track I adopted the road segments from data speed [58]. These road segments were 

modified by changing the number of lanes. The modified track is a double lane road, 

separated by dashed white line. The lane ending is marked by yellow line. These 

modifications were made keeping in mind the training needs. I needed to have clear lane 

markings for better training of the network. The road segments can be seen in Figure 12. 



 75

These segments were added to the existing Gazebo model list so that the road segments are 

readily available for use.  

 

Figure 12. Road Segments for Test Track [58] 

Upon adding the road segments I was able to see the road segments these inside the 

Gazebo Object panel. Now, all I need to do is drag and drop the segments into an empty 

Gazebo world. I have tried to maintain an equal number of left and right turns for better 

training of lateral control. The track design is completely dependent on the user needs and 

creativity. The final track is shown in Figure 13. I have also added the Traffic signs to this 

track that I modeled earlier as this track will be later used to test the application for speed 

control. 



 76

 

Figure 13. Final Test Track 

2.6.2.2 Data collection 

The data collection for lateral control requires steering input, hence I made use of 

Logitech G920 dual-motor feedback driving force steering wheel, accompanied with 

pedals, gear shifter, and car seat. This controller was selected as I needed precise steering 

angle input for training and it was very difficult to achieve the same using a keyboard or a 

regular gaming joystick.  

For the collection of training images, launch the Gazebo environment which has 

the above-designed test track along with the Vehicle model by running the command 

$roslaunch car_demo test_track.launch. Then run the python script data_collection.py. 

using the following command, $rosrun data_collection data_collection.py 

traffic_signs/data/nikhil/yyyy-mm-dd-hh-mm-ss in a new terminal, along with the path to 

save images. This has already been used before in the Data Acquisition section. As 



 77

explained earlier in the Data Acquisition section the python script creates a ROS node that 

subscribes to the camera topic. I have made one more modification to the python script,  

here I have adjusted the camera topic to publish the camera images at 45Hz, as I will need 

more images of the lanes for better training. I have also enabled the feature to save the 

steering angle of the vehicle as it was earlier commented out for the data collection for 

Traffic signs. This script will save the images with the steering angle of the vehicle at that 

moment. The steering angle values range from -1 to 1. The steering angle values are saved 

in a text file along with the image name for ease of investigation. Then the vehicle was 

driven on the track and completed multiple laps. The driver needs to be very focused as not 

to make any mistakes. The driver has to maintain the lane at all times as this data will be 

provided to the network to learn from the driver’s behavior. This means, if the driver makes 

a mistake in driving my leaving the lane, then the network will do the same and will not be 

able to maintain lane-keeping efficiently.  

Finally, once the data collection is done, pre-process the data before feeding it to 

the network for training. For pre-processing, I carefully browsed through all the images 

and deleted the images in which I saw driver errors, such as lane departures, oversteer, and 

under-steer. The data_collection.py script has been modified to facilitate for image 

cropping.The images are cropped to eliminate the redundant information from the image, 

such as the sky and the vehicle bonnet, which is covered by the camera. There were two 

reasons for this. Firstly, these regions that have been cropped out provide no valuable input 

for training. And secondly, cropping will reduce the image size which will eventually help 

reduce the training speed. A comparison of the two types of images is seen in Figure 14. 



 78

 

Figure 14. Camera Input (left) and the cropped area(right) 

2.6.2.3 Training For Lateral Control 

For training the model, I followed the process described in the Mir_torcs package. 

Before training begins, it is suggested to change the training parameters. These changes 

can be made inside const.py. The parameters include the batch size, subdivisions, image 

size, etc. These parameters are similar to the parameters used in YOLO training and are 

already explained in the Network Modifications section. For the simplicity of training, I 

will keep the training parameters to the default values provided by the developers.  

Finally, I can start training. The script used for training is train.py. Care needs to be 

taken so that the training data and csv file that contains the steering angles need to be placed 

in the same folder, and the file location needs to be provided for training. The training can 

be started with the command.  

$ cd neural_net  

$ python train.py traffic_signs/data/nikhil/yyyy-mm-dd-hh-mm-ss 



 79

Upon completion of training, the script outputs the weights file and the network 

model file along with a graph. The weight file has an extension of .h5 and contains 

information on the training. The weights have already been explained in the Training for 

Traffic signs section. The second file generated is a .json file, which contains the 

information of the network mode. The generated files will have the same name as the folder 

inside which the images are saved. These files will be used in later sections for running the 

vehicle autonomously.  These files are saved in the same folder where training data is 

saved. The graph generated contains information of the RMSE(root mean squared error) 

[49], against the number of epochs/ iterations. RMSE is a very frequently used measure to 

determine the training quality [50]. This graph can be analyzed to determine the quality of 

the training. The network is considered to be trained well when the training and validation 

error eventually begin to converge with an increase in the iterations. The results of our 

training can be seen in Figure 15. 



 80

 

Figure 15. RMSE vs Epochs 

This ends the lateral control section and in the next section, I will integrate all the 

elements that I created up until this point. 

2.6.3 Speed Controller  

In the objective section of this thesis, it is disclosed that the main motivation that 

leads to this thesis is to train a system to be able to detect and recognize Traffic signs in 

Gazebo and take decisions accordingly. So far I have provided details on creating a Gazebo 

simulation,  training for Traffic sign detection and recognition, and also a lateral controller. 

These are all the necessary components required to create an Autonomous vehicle capable 

of navigating based on the input taken from the traffic signs. The last component necessary 

is a Speed controller that will take the predictions from the traffic sign detector, lateral 



 81

controller, make decisions for vehicle control and publish these into Gazebo. This section 

explains in detail how to accomplish this task. I created a python script called, 

run_neural_darknet.py with an aim to complete this task.  

The run_neural_darknet.py script subscribes to the topic 

/bolt/front_camera/image_raw, which provides the data from the vehicle front camera. The 

camera images will be used by the lateral controller, hence I need to crop and resize the 

images to match the images provided for training of lateral controller. The image 

processing is done by calling the script Image_converter.py. This contains CvBridge [51], 

which converts between ROS Image messages and OpenCV images. The images will be 

saved in the variable name Image for later use.  

The processed images are now ready for use by drive_run.py. The drive_run script 

takes two inputs, image data and training weights. The first input provided is the Image 

variable that was generated from the Image_converter.py.  The drive_run script will load 

the model, run the weights and predict the steering angles. The steering angle values are 

saved with the variable name prediction.  The prediction values will be published via a 

ROS node. The published values are then used by the vehicle controller for lateral control. 

Finally, the run_neural_darknet.py subscribes to the topic 

/darknet_ros/bounding_boxes. As explained in the Detection messages section, this topic 

publishes the class, probability, and the bounding box information. The script saves the 

information in two variables, Class and Bounding_box. Based on the input predicted class, 

the script publishes the throttle and brake values as a ROS node. The throttle and brake 

values are hardcoded for each detected sign inside the script. For every prediction, the Class 



 82

variable is matched against the preset throttle and brake values and finally, sent to the 

vehicle controller for driving the vehicle. Apart from controlling the speed, the script also 

prints the class name and warning messages for all classes. The warning messages are 

printed within the terminal. 

All the components need to be run simultaneously to achieve autonomous driving. 

Here are the steps needed to be followed. 

1. Launch the Gazebo simulation environment using the command, 

            $ roslaunch car_demo test_track.launch  

2. Launch the Traffic sign Detection: This step will launch the Traffic sign detection 

system. Use the command, 

            $ roslaunch darknet_ros traffic_sign.launch 

3. Run the run_neural_darknet.py script: This step will run the python script explained 

above. The training weights and default throttle value need to be provided  as 

arguments to run the script. Use the command, 

            $rosrun run_neural_darknet.py run_neural_darknet.py                             

/traffic_signs/data/nikhil/yyyy-mm-dd-hh-mm-ss  0.1 



 83

 

Figure 16. Traffic Sign Recognition and Speed Control 

This completes all the procedures and steps needed to make this thesis work. I now 

have a Simulation environment with signs and a vehicle model, sign recognition using 

YOLO, vehicle lateral control and a speed control application. The next section is a brief 

discussion of the conclusion and future works. 

  



 84

CHAPTER 3. CONCLUSION 

Even though there have been many studies and numerous projects completed regarding 

the traffic sign detection and recognition, needless to say with satisfactory results, none of 

these projects were integrated on Gazebo. This simulator is supported by a large 

community of users and researchers who constantly contribute to the development of this 

platform but, in spite of this, no Gazebo labeled images data set exist. For performing this 

thesis, a real-time CNN was trained in order to detect and recognize traffic signs. For this, 

three data sets were created to train, validate and test the network. These images can be 

freely downloaded at the GitHub site for use of anyone who is interested to further continue 

working towards developing this thesis. The dataset provided contains the same amount of 

labeled and unlabeledf images, with the purpose to make the model as robust as possible 

to False Positive cases. 

On completion of training, I obtained multiple weight files. These weight files were 

compared, and the files with the highest mAP and IoU values were selected. The trained 

model was then integrated with the Gazebo simulator, which got the images from a camera 

sensor mounted on the simulated model of the Chevy Bolt. Apart from the detection, one 

other application was implemented, the Speed Controller, which deals with the application 

of Brake/Throttle depending on the detected sign. This was achieved with the use of a 

Python Script that directly sends commands to the Vehicle Control module. 

Analyzing the performance and the overall results obtained in the thesis, the following 

conclusions can be extracted. First, the initial research objective of traffic sign detection 

and recognition inside a simulated environment was achieved. In addition to this, vehicle 



 85

speed control was also implemented, providing a cognitive driving ability. Moreover, this 

thesis highly contributes to the autonomous research community. The performance of this 

thesis is encouraging and has implications for further research on self-driving studies. 

Particularly, implications in order to make research on the traffic sign recognition field and 

the applications that can be deployed to help the driver with the purpose to make the driving 

process easier and safer. 

  



 86

CHAPTER 4. REFERENCES 

[1] Çiftçioğlu, Özer, and Sevil Sariyildiz. “Data Sensor Fusion for Autonomous 
Robotics.” Serial and Parallel Robot Manipulators - Kinematics, Dynamics, Control and 
Optimization, March 30, 2012. https://doi.org/10.5772/33139. 

[2] “Driver Assistance Technologies | NHTSA.” Accessed November 23, 2019. 
https://www.nhtsa.gov/equipment/driver-assistance-technologies. 

[3]Intelligence, Business Insider. “10 Million Self-Driving Cars Will Be on the Road by 
2020.” Business Insider. Accessed November 23, 2019. 
https://www.businessinsider.com/report-10-million-self-driving-cars-will-be-on-the-road-
by-2020-2015-5-6. 

[4]Bhadani, Rahul Kumar, Jonathan Sprinkle, and Matthew Bunting. “The CAT Vehicle 
Testbed: A Simulator with Hardware in the Loop for Autonomous Vehicle Applications,” 
April 12, 2018. https://doi.org/10.4204/EPTCS.269.4 

[5]“Dosovitskiy - CARLA An Open Urban Driving Simulator.Pdf.” Accessed November 
23, 2019. http://proceedings.mlr.press/v78/dosovitskiy17a/dosovitskiy17a.pdf. 

[6].“DataspeedInc / Dbw_mkz_simulation — Bitbucket.” Accessed November 23, 2019. 
https://bitbucket.org/DataspeedInc/dbw_mkz_simulation/src/default/. 

[7]“ROS/Introduction - ROS Wiki.” Accessed November 23, 2019. 
http://wiki.ros.org/ROS/Introduction. 

[8]Mazzari, Vanessa. “ROS - Robot Operating System.” Génération Robots - Blog 
(blog), March 26, 2016. https://www.generationrobots.com/blog/en/ros-robot-operating-
system-2/. 

[9]“Catkin/CMakeLists.Txt - ROS Wiki.” Accessed November 23, 2019. 
http://wiki.ros.org/catkin/CMakeLists.txt. 

[10]“O’Kane - 2014 - A Gentle Introduction to ROS.Pdf.” Accessed November 23, 2019. 
https://cse.sc.edu/~jokane/agitr/agitr-letter.pdf. 

[11]“WPI-Robotics-SolidWorks-to-Gazebo.Pdf.” Accessed November 23, 2019. 
https://blogs.solidworks.com/teacher/wp-content/uploads/sites/3/WPI-Robotics-
SolidWorks-to-Gazebo.pdf. 

[12]“Open Dynamics Engine.” Accessed November 23, 2019. https://www.ode.org/. 

[13]“Open Dynamics Engine.” Accessed November 23, 2019. https://www.ode.org/. 

[14]“SDF Specification.” Accessed November 23, 2019. http://sdformat.org/spec. 



 87

[15]“Gazebo : Tutorial : Gazebo Components.” Accessed November 23, 2019. 
http://gazebosim.org/tutorials?tut=components&cat=get_started. 

[16]“Urdf - ROS Wiki.” Accessed November 23, 2019. http://wiki.ros.org/urdf. 

[17]“Rviz - ROS Wiki.” Accessed November 23, 2019. http://wiki.ros.org/rviz. 

[18]“Introduction to URDF — Industrial Training Documentation.” Accessed November 
23, 2019. https://industrial-training-
master.readthedocs.io/en/melodic/_source/session3/Intro-to-URDF.html. 

[19]“Osrf / Gazebo_models — Bitbucket.” Accessed November 23, 2019. 
https://bitbucket.org/osrf/gazebo_models/src/default/. 

[20]Understanding the Gazebo Plugins - Mastering ROS for Robotics Programming - 
Second Edition, 2018. 
https://subscription.packtpub.com/book/hardware_and_creative/9781788478953/7/ch07lv
l1sec68/understanding-the-gazebo-plugins. 

[21]“Gazebo : Tutorial : ROS Overview.” Accessed November 23, 2019. 
http://gazebosim.org/tutorials?tut=ros_overview&cat=connect_ros. 

[22]Osrf/Car_demo. C++. 2017. Reprint, Open Source Robotics Foundation, 2019. 
https://github.com/osrf/car_demo. 

[23]Zhang, Changfu, Zhuangde Jiang, Dejiang Lu, and Taian Ren. “3D MEMS Design 
Method via SolidWorks.” In 2006 1st IEEE International Conference on Nano/Micro 
Engineered and Molecular Systems, 747–51, 2006. 
https://doi.org/10.1109/NEMS.2006.334887. 

[24]Foundation, Blender. “Blender.Org - Home of the Blender project - Free and Open 
3D Creation Software.” Blender.Org (blog). Accessed November 23, 2019. 
https://www.blender.org/. 

[25]“AutoDrive Challenge.” Accessed November 23, 2019. 
https://www.sae.org/attend/student-events/autodrive-challenge/. 

[26]“Gazebo : Tutorial : Intermediate: Sensor Noise.” Accessed November 23, 2019. 
http://gazebosim.org/tutorials?cat=guided_i&tut=guided_i3. 

[27]“ASCII.” On Wikipedia, October 24, 2019. 
https://en.wikipedia.org/w/index.php?title=ASCII&oldid=922763882. 

[28]“Joint_state_publisher - ROS Wiki.” Accessed November 23, 2019. 
http://wiki.ros.org/joint_state_publisher. 

[29]“Ignition Math: Ignition Math.” Accessed November 23, 2019. 
https://ignitionrobotics.org/api/math/4.0/index.html. 



 88

[30]“Launch Files — ROS Tutorials 0.5.1 Documentation.” Accessed November 23, 
2019. http://www.clearpathrobotics.com/assets/guides/ros/Launch%20Files.html. 

[31]Redmon, Joseph, and Ali Farhadi. “YOLOv3: An Incremental Improvement.” 
ArXiv:1804.02767 [Cs], April 8, 2018. http://arxiv.org/abs/1804.02767. 

[32]Doan, Tri, and Jugal Kalita. “Selecting Machine Learning Algorithms Using 
Regression Models.” In 2015 IEEE International Conference on Data Mining Workshop 
(ICDMW), 1498–1505, 2015. https://doi.org/10.1109/ICDMW.2015.43. 

[33]Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir 
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going Deeper 
with Convolutions.” ArXiv:1409.4842 [Cs], September 16, 2014. 
http://arxiv.org/abs/1409.4842. 

[34]Pedoeem, Jonathan, and Rachel Huang. “YOLO-LITE: A Real-Time Object 
Detection Algorithm Optimized for Non-GPU Computers.” ArXiv:1811.05588 [Cs], 
November 13, 2018. http://arxiv.org/abs/1811.05588. 

[35]Hsu, Shih-Chung, Chung-Lin Huang, and Cheng-Hung Chuang. “Vehicle Detection 
Using Simplified Fast R-CNN.” In 2018 International Workshop on Advanced Image 
Technology (IWAIT), 1–3, 2018. https://doi.org/10.1109/IWAIT.2018.8369767. 

[36]“Refining Faster-RCNN for Accurate Object Detection - IEEE Conference 
Publication.” Accessed November 23, 2019. 
https://ieeexplore.ieee.org/document/7986913. 

[37]Hui, Jonathan. “Object Detection: Speed and Accuracy Comparison (Faster R-CNN, 
R-FCN, SSD, FPN, RetinaNet And….” Medium, March 26, 2019. 
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-
faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359. 

[38]Redmon, Joseph, and Ali Farhadi. “YOLOv3: An Incremental Improvement.” 
ArXiv:1804.02767 [Cs], April 8, 2018. http://arxiv.org/abs/1804.02767. 

[39]Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “ImageNet: 
A Large-Scale Hierarchical Image Database.” In 2009 IEEE Conference on Computer 
Vision and Pattern Recognition, 248–55, 2009. 
https://doi.org/10.1109/CVPR.2009.5206848. 

[40]Johnson, Rie, and Tong Zhang. “Accelerating Stochastic Gradient Descent Using 
Predictive Variance Reduction.” In Advances in Neural Information Processing Systems 
26, edited by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. 
Weinberger, 315–323. Curran Associates, Inc., 2013. http://papers.nips.cc/paper/4937-
accelerating-stochastic-gradient-descent-using-predictive-variance-reduction.pdf. 

[41]Leggedrobotics/Darknet_ros. C++. 2017. Reprint, ETH Zurich Legged Robotics, 
2019. https://github.com/leggedrobotics/darknet_ros. 



 89

[42]“OpenCV.” Accessed November 23, 2019. https://opencv.org/. 

[43]“Boost C++ Libraries.” Accessed November 23, 2019. https://www.boost.org/. 

[44]“NVIDIA CUDA Installation Guide for Linux.” Concept. Accessed November 23, 
2019. http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html. 

[45]“YAML.” On Wikipedia, November 13, 2019. 
https://en.wikipedia.org/w/index.php?title=YAML&oldid=925982021. 

[46]Jiang, Jingjing, and Alessandro Astolfi. “Lateral Control of an Autonomous 
Vehicle.” IEEE Transactions on Intelligent Vehicles 3, no. 2 (June 2018): 228–37. 
https://doi.org/10.1109/TIV.2018.2804173. 

[47]Sharma, Shobit, Girma Tewolde, and Jaerock Kwon. “Behavioral Cloning for Lateral 
Motion Control of Autonomous Vehicles Using Deep Learning.” In 2018 IEEE 
International Conference on Electro/Information Technology (EIT), 0228–33, 2018. 
https://doi.org/10.1109/EIT.2018.8500102. 

[48]Bojarski, Mariusz, Philip Yeres, Anna Choromanska, Krzysztof Choromanski, 
Bernhard Firner, Lawrence Jackel, and Urs Muller. “Explaining How a Deep Neural 
Network Trained with End-to-End Learning Steers a Car.” ArXiv:1704.07911 [Cs], April 
25, 2017. http://arxiv.org/abs/1704.07911. 

[49]Yao, Yuan, Lorenzo Rosasco, and Andrea Caponnetto. “On Early Stopping in 
Gradient Descent Learning.” Constructive Approximation 26, no. 2 (August 1, 2007): 
289–315. https://doi.org/10.1007/s00365-006-0663-2. 

[50]Ashourloo, Davoud, Hossein Aghighi, Ali Akbar Matkan, Mohammad Reza 
Mobasheri, and Amir Moeini Rad. “An Investigation Into Machine Learning Regression 
Techniques for the Leaf Rust Disease Detection Using Hyperspectral Measurement.” 
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9, 
no. 9 (September 2016): 4344–51. https://doi.org/10.1109/JSTARS.2016.2575360. 

[51]“Cv_bridge — Cv_bridge 0.1.0 Documentation.” Accessed November 23, 2019. 
http://docs.ros.org/melodic/api/cv_bridge/html/python/index.html. 

[52]Shah, Shital, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. “AirSim: High-
Fidelity Visual and Physical Simulation for Autonomous Vehicles.” ArXiv:1705.05065 
[Cs], July 18, 2017. http://arxiv.org/abs/1705.05065. 

[53]NVIDIA Developer. “NVIDIA DRIVE Constellation,” February 14, 2019. 
https://developer.nvidia.com/drive/drive-constellation. 

[54]“Documentation | CMake.” Accessed December 10, 2019. 
https://cmake.org/documentation/. 



 90

[55]GitHub. “Jrkwon/Nikhil.” Accessed December 10, 2019. 
https://github.com/jrkwon/nikhil. 

[56]Kwon, Jaerock. Jrkwon/Mir_torcs. Python, 2018. 
https://github.com/jrkwon/mir_torcs. 

[57] ResearchGate. “On the Lane Detection for Autonomous Driving: A Computational 
Experimental Study on Performance of Edge Detectors.” Accessed December 20, 2019. 
https://www.researchgate.net/project/On-the-Lane-Detection-for-Autonomous-Driving-
A-Computational-Experimental-Study-on-Performance-of-Edge-Detectors. 
 
[58] “DataspeedInc / Dbw_mkz_simulation — Bitbucket.” Accessed November 23, 
2019. https://bitbucket.org/DataspeedInc/dbw_mkz_simulation/src/default/. 

 

 


