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Abstract— Off-road autonomy is a challenging topic for
mobile robots since the majority of navigation algorithms were
developed for indoor, structured, or even surface outdoor envi-
ronments. To address this problem, vision-based and Behavior
Cloning (BC) style navigation with Deep Neural Networks
(DNN) approaches have been proposed. Yet, it has not been
clear which area of the input vision data must be focused on
and how big the training dataset should be. In this study, we
analyzed how variations in the ROI of the input image affect the
controller’s performance in terms of precision, completion time,
and autonomy in off-road navigation. Our findings indicate that
the selection of ROI significantly impacts the DNN controller’s
ability for off-road autonomous navigation. Specifically, we
observe that full-sized input images tend to deteriorate the
performance in precision driving tasks, capturing unnecessary
details for maneuvering. Conversely, utilizing a cropped ROI,
mainly focusing on the upper region of the bottom half of
the image, can optimize completion time-related objectives.
Furthermore, using a bigger dataset improved autonomy with
a selection of the center area of ROI. These insights offer
valuable considerations for designing a DNN-based BC con-
troller tailored to specific navigation requirements, balancing
performance, and real-world applicability.

I. INTRODUCTION

Recent advancements in robotics and AI have significantly
transformed various sectors, playing a vital role in improving
human lives by handling rigorous or hazardous tasks. The
agricultural sector has also witnessed substantial benefits
from robotics technology. Robots contribute to enhancing
food production for the growing population by undertaking
tasks like precision planting, crop monitoring, weed detec-
tion, and autonomous harvesting. However, navigating in the
agricultural environment poses unique challenges for mobile
robots that have been developed for indoor environments due
to the dense and uneven nature of fields, as well as varying
lighting and weather conditions.

In response to these challenges, researchers have
been exploring advanced methods like Deep Neural
Network-based Behavior Cloning (DNN-based BC) [1][2]
for autonomous navigation in agricultural landscapes
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[3][4][5][6][7]. Through comprehensive comparative analy-
ses, we investigated how variations in Region of Interest
(ROI) in the input image and dataset size impact the training
of DNN-based BC algorithms for navigation in outdoor
agricultural environments. By assessing different ROI and
dataset variations, we aimed to provide insights into the
selection of ROI and the effectiveness of dataset size in
enhancing the control and navigation capabilities of robots
in agricultural settings.

Conducting experiments in a simulated orchard farm en-
vironment, we measured the performance of DNN-based BC
controllers. The metrics in this work are derived from [8],
including driving deviation, completion time, success rate,
and human intervention. Our results indicate that selecting
the ROI and optimizing dataset size significantly influence
the autonomous navigation performance of DNN-based BC
algorithms in off-road agricultural environments, showing
promising capabilities for enhancing robotic navigation in
such challenging landscapes.

II. RELATED WORK

Neural Network (NN)-based BC was proposed and val-
idated by Autonomous Land Vehicle in a Neural Network
(ALVINN) [9], which used a fully connected and shallow
neural network. The input nodes consist of a 30×32 camera
image and an 8 × 32 2D LiDAR scan image. One hidden
layer with 29 nodes was used. The output unit has 45
nodes to indicate the direction to move forward. DARPA
Autonomous Vehicle (DAVE) [10] was the first attempt to
use a Convolutional Neural Network (CNN) to extract road
features to determine a vehicle’s steering angle given an
image from a forward-facing camera. NN-based BC was
revitalized using DNN after deeper neural networks became
viable options due to the advancement of parallel processing
hardware, software (deep learning toolkits: Tensorflow and
PyTorch), and algorithms such as batch normalization. A
team from NVIDIA presented an end-to-end BC to learn
how to steer a vehicle using a CNN [1].

In off-road agricultural environments, there has been ac-
tive research on BC using End-to-End (E2E) learning for
autonomous navigation. An autonomous row-following robot
was proposed with a focus on low cost, and no extensive
re-engineering [2]. They used a single front camera to
infer steering angles for an autonomous row-following. A
Deep CNN (DCNN) was pre-trained with open datasets and
deployed their robot. Agronav is an autonomous navigation
framework for agricultural robots [7]. This framework is an
E2E vision-based but uses semantic segmentation and line



detection. Despite the successes of these various approaches,
few analytical studies have been conducted on ROI and
dataset size with respect to the performance of the trained
DNN-based controllers.

III. METHOD

A. Operational Environment

The simulation environment employed in this study com-
prises two fundamental components: the robotic platform and
the agricultural landscape. Specifically, we utilized AgileX
Robotics’ Scout 2.0 robot as the robotic platform [11].
For simulating the agricultural environment, we utilized an
orchard farm environment [12]. This simulated world has
many rows of trees separated by dirt paths, and the terrain
is not flat. Small bumps in the dirt paths add an additional
challenge to vision-based navigation because the shape of
off-road terrain changes dramatically. We added concrete
barriers to the original environment to prevent a robot from
getting out of the environment. To add variations to the
robot’s viewpoint, oak trees, and a parked vehicle were also
added. We used the Robot Operating System (ROS) [13]
Noetic version in Ubuntu 20.04. The source code for the
robot and its environment is open and managed at a GitHub
repository [14].

B. Data Collection

The dataset for the DNN-based BC can be formulated as:

D =
{
o(i), a(i)

}T

t=1
, (1)

where o(i) is the observation collected at the time i,
and a(i) is the corresponding actions (i.e., steering, throttle,
brake) at that particular time, T represents the total time
step of the data collection. Observations include front camera
input images, the velocities, accelerations, and locations of
a robot. Actions are steering, throttle, and brake of a robot.
In this study, we used the input images from a front camera
as an observation and steering angles as an action.

We collected data in three different conditions: the default
simulated setting, different lighting directions, and different
ground colors. The changes in tree shadow directions and
lengths represent daily variations of the simulated environ-
ment. The ground color changes indicate a seasonal variation.

To show the effect of the training dataset size, we prepared
two sets of data: Full and Half. Full dataset represents
the entire data, including the default simulated, different
lighting directions, and different ground colors. Half dataset
comprises of randomly selected 50% of Full data. This
amalgamation resulted in a dataset comprising a total of
119,052 images, each accompanied by corresponding labels
for steering angle, throttle, and brake, as well as robot
orientation and position. Subsequently, the full dataset was
randomly partitioned into two equal subsets, each containing
59,526 images to constitute Half dataset.

In the collected dataset, there will be dominant zero
steering angles since the robot needs to move forward in most
cases. Thus, balancing the dataset with respect to steering
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Fig. 1: Region of Interests in the input image. The entire
image is NC (No Crop) - colored yellow, BC (Bottom Half
Crop) is the bottom half of the image - green, UC (Upper
part of the BC) is the upper half of the BC - cyan, and AC
(Area Crop) is the center area - magenta.

angles is required to train the neural network. We call this
pre-processing data normalization. Around 70% of front
camera images are mapped to near zero steering angle in
this study. We normalized the dataset not to have more than
1,000 samples per each around 7.2◦ steering angle range.
Note that the angle range is -90◦ to 90◦ (from the far right
to the far left). This normalization ensures that a DNN does
not learn to generate the zero steering angle to minimize the
average error of steering angle prediction regardless of the
changes in an input image.

C. Region of Interest

We selected four different ROIs to investigate the impact
of different ROIs in the input image on the efficiency of
DNN-based BC for E2E driving. See Fig. 1 for more details.

• NC (No Crop): The input image remained at its original
resolution of 640×480 pixels, without any cropping.

• BC (Bottom Half Crop): The input image was cropped
to 640×240 pixels, comprising only the bottom half of
the original image.

• UC (Upper part of the BC) The input image was
cropped to 640×120 pixels, containing the upper-
bottom half of the original image.

• AC (Area Crop): The input image was cropped to a
size of 400×130 pixels, representing a specific selected
pixel area deemed optimal for network training.

By training the DNN-based BC model on each of these
ROI configurations with both the full and half datasets,
we aimed to evaluate how different regions of the input
image affect the DNN model’s performance in E2E driving
tasks. This systematic investigation will provide insights into
the optimal ROI for network training, ultimately enhancing
the DNN model’s efficiency and effectiveness in real-world
driving scenarios.

D. Neural Network

We designed a DNN to extract important features from
input images to infer corresponding steering angles. The
DNN architecture for this study is inspired by the NVIDIA



PilotNet [1]. The architecture consists of four convolutional
layers, each followed by a corresponding max-pooling layer,
in addition to four dense layers. The first layer, acting as a
lambda layer, is responsible for scaling the input image pixel
data from the range of (0, 250) to (-1, 1). Conv2D layers are
utilized to extract important features relevant to the steering
angle inference task. The kernel size in all convolutional
layers is three. The Rectified Linear Unit (ReLU) activation
function was chosen and applied across all network layers
except for the output layer. MaxPooling2D layers was used
to downsample the convolutional layers. Finally, a flattened
layer precedes three Dense layers, gradually decreasing the
node size and culminating in a single output representing the
steering angle. The Mean Squared Error (MSE) loss function
is employed to evaluate the disparity between the predicted
steering angle and the ground truth.

DNN-based BC learns from expert demonstrations. Thus,
the training can be formulated as finding the optimal policy
π with parameters θ using the following equation:

O → policy : πθ → A, (2)

where O =
{
o(i)

}T

t=1
, and A =

{
a(i)

}T

t=1
. The pairs

of (O, A) will be provided a the form of (1). The policy
π is implemented with a DNN and θ is a set of connection
weights of the DNN.

The work for the data collection, configurations of ROIs,
and DNN-related efforts are open-sourced and managed at a
GitHub repository [15].

E. Performance Metrics

The performance metrics that we used to assess the
effectiveness of the selected techniques include driving de-
viation, completion time, and human intervention, which are
inspired by the Online Performance Evaluation Metrics Index
(OPEMI) [8].

1) Driving Deviation: Driving deviation is quantified as
the sum of all the distance values calculated by using (3)
from the desired path to the robot’s current location during
navigation in one driving session. The number of data points
where a distance was measured can be different in a lane.
So, to balance the number of data points between trials, we
selected 1,000 data points from each navigation trial in a
lane.

Driving Deviation =

N∑
i

| Axi +Byi + C |√
A2 +B2

, (3)

where i is an index of the robot’s location, N is the total
number of the robot’s location data points, (xi, yi) represents
a location of the robot, and A, B, and C are coefficients
defining a straight line (Ax+By+C = 0) representing the
desired path.

2) Completion Time: Completion time denotes the dura-
tion taken by a robot to travel from the starting point to the
target within lanes. This duration includes instances where
humans intervene to assist the robot. The time does not stop
during the rescue session by a human.

3) Autonomy: Autonomy characterizes the robot’s capa-
bility to achieve its target with less human assistance. Human
interventions occur when the robot encounters obstacles like
trees or puddles. Autonomy can be calculated using (4),
inspired by the autonomy metric proposed by [1]. In our
adaptation, we penalize human interventions with a duration
of 15 seconds instead of the original 6 seconds, as it typically
takes about 15 seconds for a human to readjust the robot’s
pose in an orchard farm setting.

Autonomy =

(
1− N × 15 (seconds)

T (seconds)

)
× 100, (4)

where N is the number of human interventions, and T is
the elapsed time the total time the robot navigates from the
starting point to the target.

IV. EXPERIMENTS

We trained DNNs with two datasets (Full and Half
dataset) with four different ROIs (NC, BC, UC, and AC. See
Fig. 1), which constitutes eight neural network controllers.
Their navigation performance was tested with the proposed
metrics at five different lanes in the simulated orchard farm.
These five lanes are depicted in Fig. 2 Our experiments
involved navigating the robot through five distinct lanes,
labeled as lanes 1 to 5, as illustrated in Fig. 2. We used
all eight DNN controllers to have the robot autonomously
drive each lane twice for comprehensive evaluation purposes.
Initially, the robot was tasked with moving from its starting
position (assumed to be the origin of the lane) to the end
of the lane. Upon reaching the designated endpoint, the
robot was instructed to navigate back to its initial position
within the same lane. These navigation tasks were referred
to as left-to-right (LR) and right-to-left (RL) movements,
corresponding to the respective directions of travel within
the lane. We had the robot autonomously navigate both LR
and RL in the five lanes and collected all the waypoints of the
robot driven by a DNN. The driving trajectories, along with
additional information such as timestamps, the robot’s poses,
velocities, and accelerations, were used in the performance
evaluations. Keras framework 2.14.0 with TensorFlow 2.15
was used to train, test, and evaluate the DNNs. The DNNs
were operated within a Python 3.9 environment on Ubuntu
20.04 with the ROS Noetic distribution. Note that Python
3.10 was not compatible with ROS Noetic. An NVIDIA
GeForce RTX 2080 GPU with 8 GB RAM was used to
accelerate the DNN training and inference. The main CPU
was the Intel Core i9-9900, and the system memory size was
32 GB.

V. RESULTS

The min-max normalized performance evaluation results
are shown in Table I. All four different ROIs with two
different datasets were tested in Driving Deviation (DD),
Completion Time (CT), and Autonomy (AT). We put a tilde
to DD and CT to indicate the normalized values: D̃D and
C̃T . The raw values of these metrics and actual driving
paths are reported in the Appendix. Table I provides a
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Fig. 2: A bird-eye view of the orchard farm environment
in the simulator. Dashed lines with a number represent the
lanes that the robot was tested for navigation. Yellow arrows
indicate navigation directions: Left-to-Right (LR) and Right-
to-Left (RL).

comprehensive summary of key evaluation metrics pertaining
to navigation in both LR and RL directions. All numbers in
the table are average values from driving five selected lanes
(Fig. 2).

TABLE I: Normalized performance evaluations

Dataset ROI D̃D ↓ C̃T ↓ AT% ↑
LR RL LR RL LR RL

Full NC 1.00 1.00 1.00 0.98 100.00 94.40
BC 0.00 0.04 0.85 1.00 88.70 88.87
UC 0.05 0.05 0.00 0.00 100.00 100.00
AC 0.03 0.00 0.77 0.28 100.00 100.00

Half NC 0.39 0.45 0.46 0.43 87.70 74.80
BC 0.05 0.02 0.24 0.29 100.00 100.00
UC 0.06 0.05 0.25 0.30 100.00 100.00
AC 0.04 0.04 0.23 1.00 54.49 72.18

Firstly, we analyzed the driving deviation, which did not
exhibit significant improvements or deterioration across the
different techniques. However, the deviation is comparatively
greater when the model is trained with full sized image in
both half and full sized dataset. Additionally, DD and CT
are incorporated to ensure the consistency and reliability of
the obtained results. Our results reveal differences in neural
network performance based on the selection of an ROI and
dataset size. Full-sized images induce greater driving devi-
ation, while cropped Regions of Interest (ROIs) show com-
parable or superior performance, highlighting the efficacy
of selective visual focus in driving simulation environments.
These results emphasize the importance of optimizing image
size for improved driver training and road safety measures.
Furthermore, prioritizing a cropped ROI over full-sized in-
put images demonstrates improved Autonomy, enabling the
network to allocate computational resources more efficiently
to relevant environmental cues.

We have contrasted the efficacy of dataset size and ROI
through performance metrics outlined in Section III-E. Var-
ious scenarios may prioritize one metric over the other, as
articulated in the following equation formulation.

Pω = ωDD(1−D̃D)+ωCT (1−C̃T )+ωAT (AT/100), (5)
where ωDD, ωCT , and ωAT are weight variables to

prioritize the precision driving (by using normalized driving
deviation (D̃D)), faster completion time (by using normal-
ized completion time (D̃D)), and autonomy (by using the
autonomy metric AT ) over one another in different scenarios.
Note that ωDD + ωCT + ωAT = 1. The weights can be
determined based on use cases. Three sample scenarios are
shown in Table II: Precision, Speed, and Autonomy. These
scenario-based results show that (i) using a bigger dataset is
better regardless of ROI choices, and (ii) UC is a good ROI
regardless of the dataset size in the three different scenarios.
TABLE II: Overview of the scenarios where weighted per-
formances based on three different cases

Scenarios ωDD, ωCT , ωAT Dataset ROI Pω ↑
Precision 0.85, 0.075, 0.075 Full NC 0.07

BC 0.93
UC 0.96
AC 0.92

Half NC 0.62
BC 0.94
UC 0.93
AC 0.86

Speed 0.075, 0.85, 0.075 Full NC 0.07
BC 0.27
UC 1.00
AC 0.34

Half NC 0.57
BC 0.79
UC 0.78
AC 0.11

Autonomy 0.075, 0.075, 0.85 Full NC 0.85
BC 0.84
UC 1.00
AC 0.94

Half NC 0.83
BC 0.98
UC 0.98
AC 0.54

VI. CONCLUSION

This study highlights the significant impact of an ROI
selection and dataset size on DNN-based BC controller per-
formance for autonomous navigation. By considering these
factors, designers can tailor network architectures to effec-
tively address precision, speed, and autonomy requirements
in navigation tasks. Future studies may explore advanced
techniques for dynamically adjusting an ROI and dataset size
based on real-time navigation conditions, further enhancing
the adaptability and robustness of autonomous navigation
systems. We plan to explore further by applying different
network architectures and more fine-grained dataset sizes
and deploying them to an actual robot in a real physical
agricultural environment.
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APPENDIX

TABLE III: Performance evaluation of each dataset for the respective region of interests

Dataset Region of Interest Driving Deviation (DD) (meters) Completion Time (CT) (seconds) Autonomy
LR RL LR RL LR RL

Full NC 1406.33 (±1296.84) 1426.38 (±1185.12) 273.59 (±20.91) 268.15 (±13.64) 100.00% (±0) 94.40% (±1)
BC 179.21 (±60.73) 237.76 (±101.7) 265.33 (±17.64) 269.63 (±12.05) 88.70% (±2) 88.87% (±2)
UC 237.11 (±86.24) 244.76 (±84.75) 218.06 (±65.7) 214.31 (±62.21) 100.00% (±0) 100.00% (±0)
AC 220.87 (±105.92) 186.34 (±82.34) 260.76 (±18.34) 229.65 (±12.68) 100.00% (±0) 100.00% (±0)

Half NC 655.13 (±108.89) 740.44 (±200.59) 243.9 (±132.54) 238.15 (±17.84) 87.70% (±2) 74.80% (±4)
BC 235.21 (±94.8) 216.5 (±71.76) 231.26 (±15.2) 230.14 (±13.72) 100.00% (±0) 100.00% (±0)
UC 258.37 (±64.67) 253.15 (±52.77) 231.78 (±15.1) 231.13 (±13.04) 100.00% (±0) 100.00% (±0)
AC 231.08(±124.08) 237.76 (±101.7) 230.69 (±82.79) 269.63 (±12.05) 54.49% (±7) 72.18% (±5)
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Fig. 3: LR (Left to Right) driving deviation from a straight line in each selected lane with Full dataset for NC, BC, UC,
and AC from the top.
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Fig. 4: LR (Left to Right) driving deviation from a straight line in each selected lane with Half dataset for NC, BC, UC,
and AC from the top.
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Fig. 5: RL (Right to Left) driving deviation from a straight line in each selected lane with Full dataset for NC, BC, UC,
and AC from the top.
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Fig. 6: RL (Right to Left) driving deviation from a straight line in each selected lane with Half dataset for NC, BC, UC,
and AC from the top.
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Fig. 7: Weighted performance of different ROIs with respect to the data size.
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Fig. 8: Weighted performance of different data sizes with respect to the ROIs.


