
CAREER: B-Morpheus: Perceptual-Motor Active Inference Framework for
Highly Automated Mobility Systems

Introduction
The long-term career goal of the Principal Investigator (PI) is to discover computational principles of
general intelligence, replicate them to build Artificial Intelligence (AI) for highly automated mobility, and
integrate them with lifelong learning through project-based approaches in K-12, undergraduate, and
graduate students. The overarching objective of this project is to explore a novel Machine Learning (ML)
approach and propose an alternative and more effective perspective in perception and control for highly
automated mobility systems. This will be achieved by addressing existing problems in other methods,
such as Imitation Learning (IL) and Reinforcement Learning (RL). The PI aims to establish a sturdy
foundation in the field of intelligent machines that replicate the functionality of the brain for highly
automated mobility through the proposed synergistic activities of interdisciplinary research and education.

Overview of Proposed Research and Education Plan
Research Overview: Recent advances in AI, particularly in ML and Computer Vision (CV), have
demonstrated promising results in highly automated mobility systems. However, it is unlikely that the
achievement of Level 5 - Full Driving Automation [1] will be realized in the near future, considering the
recent Robotaxi accidents of Waymo and GM Cruise, as well as several Tesla Autopilot crashes [2–10].
This is primarily due to the inherent limitations of existing machine-learning methods, as evidenced by
the causes of the accidents [4, 9, 11–15]. Traditional approaches rely on passive data collection and use
them to train ML systems. These learned action policies may have limited adaptability to new driving
scenarios and varying conditions, leading to performance degradation in real-world situations. In order to
overcome these challenges, this project aims to design and build B-Morpheus, a novel Active Inference
Framework (AIF) using perceptual-motor learning [16–18] for highly automated mobility systems.
B-Morpheus has a generative internal model that learns the associative relationship between the actions of
an agent and corresponding environmental changes by interacting with it through motor babbling (random
movement of its bodies to obtain proprioception) [19–22]. The motor imagery capability of B-Morpheus
uses the generative model to predict the sensory outcome of actions. By integrating the generative models
and motor imagery into the AIF, B-Morpheus achieves goal-directed tasks more robustly in automated
mobility. B-Morpheus actively explores and refines its perception and action strategies through
perceptual-motor learning with active inference principles. This leads to more efficient learning,
improved robustness in dynamic environments, reduced data dependency, and potentially hierarchical
representation for structured learning. Research Thrusts: The following three research thrusts will be
investigated to build B-Morpheus, an intelligent agent based on perceptual-motor AIF: (i) the
development of generative models to realize perceptual-motor learning, (ii) the creation of a neural AIF to
select optimal action policies through covert actions, and (iii) the validation of the perceptual-motor AIF
with actual vehicles in a realistic environment.
Education Overview: The long-term educational goal is to attract a more diverse student population to
Science, Technology, Engineering, and Math (STEM) disciplines, retain them by providing them with
positive hands-on experiences, and encourage them to pursue their careers in STEM. The primary
objectives are as follows. The first is to teach students, particularly those from underrepresented groups in
the Detroit metropolitan area, and share the PI’s passion for research on intelligent systems by organizing
summer pre-college engineering programs for K-12 and developing online course modules for
undergraduate and graduate students as well as working professionals. The PI will provide more
opportunities for underrepresented groups by pursuing sponsorships (GM Foundation and The Donald
Lee Smith Fund were sponsors for the PI’s previous pre-college programs in multiple years). This
initiative will facilitate diversity in STEM and prepare them for emerging industries that are yet to emerge
in the United States. The second is to foster students' enjoyment of STEM through hands-on experience
using the Project-Based Learning (PBL) methodology, which will introduce STEM to them with positive



engagement. The third is to provide students with opportunities to engage in lifelong learning by
cultivating self-directed learning through the PBL. Through positive engagement in learning, students will
be prepared to study and comprehend new technologies even after their graduation. Education Thrusts:
The PI’s educational hypothesis is that teaching in engineering and science can be improved by means of
PBL, hands-on experience, and lifelong learning. (i) PBL is a teaching method where students gain
knowledge and skills by working to investigate a complex question, problem, or challenge. Faculty guides
students on projects and helps them to apply classroom learning to current real-world challenges.
Hands-on experience is based on the idea that learning is facilitated by body engagement. (ii) The
preparation for lifelong learning necessitates the provision of a robust foundation for lifelong learning,
whereby students can continue to refine and update their knowledge and skillsets.

Expected Significance
Intellectual Merit: The novelties of this project are (i) the first major study on neural AIF for highly
automated mobility aiming to validate with actual vehicles in the real world, (ii) the first major
investigation of driving behavior as motor skill development through perceptual-motor learning, and (iii)
the elimination of the need to use RL frameworks required to train a controller. If successful, the
B-Morpheus will provide deeper insight into how to build a robust and reliable intelligent control and
perception system for mobility. The proposed perceptual-motor AIF will also provide a firm foundation
for embodied cognition, which could be the next step towards Artificial General Intelligence (AGI). This
integrated framework for perception and control provides alternative and superior solutions to existing
approaches in IL and RL for automated mobility in how the machine learns a task. The novelty of
B-Morpheus lies in learning perceptual-motor skills that refer to coordinating sensory information and
motor actions to interact with dynamic environments instead of mapping sensory information to actions
through sense-plan-act methods. An additional novelty is the way of training complex tasks. IL requires to
collect task-specific demonstrations from experts. RL necessitates the definitions of reward, value, and
cost functions and has difficulty in transferring policies to a new environment. In contrast, B-Morpheus
learns perceptual-motor skills to construct causal representations from actions to sensory feedback and
identify an optimal action policy through motor imagery to conduct goal-directed tasks. If successful,
B-Morpheus will address the challenges of IL and RL with regard to high data dependency, long-tail
distribution, and generalization challenges by learning perceptual-motor skills and integrating perception
with action through the AIF.
Broader Impact Highlight: The proposed project, B-Morpheus, aims to discover the computational
principles of general intelligence and replicate them to build AI for mobility systems. The results of this
project will ensure the robustness and adaptability of highly automated mobility, so it will save more
human lives and reduce greenhouse gases through better perception and more efficient control systems.
B-Morpheus will also provide new knowledge and tools to educate future engineers and researchers. The
education plan integrated with the research will lead to hands-on experience for K-12 and new research
opportunities for undergraduate and graduate students. In addition to the proposed research, one hardware
platform and full-stack software will be developed to be used in educating the multidisciplinary research
topics involved in B-Morpheus. An open-source and modular robotic platform, B-ROVER (RObotic
Vehicle for Education and Research), will be designed for the field of AI and autonomy education using a
1/4th scale Electric Vehicle (EV) with a Drive-By-Wire (DBW) system [23–25]. This programmable
scaled vehicular platform will be used to introduce perceptual-motor AIF to K-12 and undergraduate
students and test students’ ideas on the platform without worrying about any safety issues. To provide
B-ROVER with a full-stack software package, OSCAR (Open-Source Robotic Car Architecture for
Research and Education) supporting Deep Neural Network (DNN)-based autonomous driving [26] will be
further developed to support this platform. If successful, B-ROVER EV models with OSCAR will be
deployed to provide an affordable and accessible platform to educate perceptual-motor AIF to a broader
community, including underrepresented groups in Detroit, Michigan (77.9% of the residents are African
American [27]). In addition, a Kia Soul EV with Sygnal DBW [28, 29] and a Chrysler Pacifica Hybrid



[30, 31] with Dataspeed DBW [32]) will be utilized as well to provide students with various opportunities
to learn brain-inspired AI and practice their knowledge of autonomous driving.
Research-Education Integration: The proposed research will contribute to a deeper scientific
understanding of brain-inspired perception and control methods that closely resemble how an organism
sees and acts to accomplish goal-directed tasks. Using the outputs of the proposed multidisciplinary
research, the PI will create educational modules in multidisciplinary areas (brain science, cognitive
science, CV, and ML). The synergistic integration of research and education will enable the project to
attract more K-12, undergraduate, and graduate students and the general public through in-person summer
camps and online and in-person workshops.

PI Qualifications and Long-Term Career Goal
PI Qualifications: The PI has a wealth of multidisciplinary experience in industry and academia,
spanning product research and development, computational neuroscience, robotic microscopes for brains,
neuro-anatomical data analyses and their visualization, robotics, and autonomous vehicles: (i)
computational neuroscience [33–37]; (ii) robotic microscope, brain scanner, and neuronal data analysis
tools [38–46]; (iii) robotics and mobility [47–54]; (iv) autonomous vehicles [55–61]; (v) cybersecurity
and energy systems [62–65]. The PI also has actively participated with students in various types of
collegiate challenges: (i) Indy Autonomous Challenge in 2020 - 2021 [66] (advanced to the second
round), which is a collaborative effort to challenge university students to imagine, invent and prove a new
generation of automated vehicle software (ii) SAE Mobility Forward: AI Mini Challenge in 2021 (3rd
Places in Showcase Booth, Solutions Presentation, and Solutions Report). (iii) Battery Workforce
Challenge in 2023 - 2026, sponsored by the American Society for Engineering Education (ASEE).
Long-Term Career Goal: The long-term research goal of the PI is to investigate true intelligence through
embodied AI and build a robust intelligent machine that replicates the functionality of the brain. The PI
will discover computational principles of general intelligence and apply them to highly automated
mobility. The PI posits that embodied AI encompasses a diverse array of systems that interact with the
physical world by employing sensors and actuators. The PI also believes that embodied AI can be a new
frontier that goes beyond traditional AI systems that interact with information-centric environments. The
long-term education goals are to attract more students from underrepresented groups to the field of
intelligent mobility, which is the future growth engine, and increase enrollment and retention of
engineering students who are underrepresented in STEM areas. This will be achieved through various
methods, including the NSF Research Experience for Undergraduates (REU), the Summer Undergraduate
Research Experience (SURE) for undergraduate students, and summer prep-college engineering camps
for K-12. This will prepare them for lifelong learning through open-source hardware and software
packages, thereby enabling students to continuously update their knowledge base and skills.

Research Background and Related Work
Research into how intelligent systems can optimally choose actions to control highly automated mobility
is making rapid and considerable progress, in large part thanks to the use of ML. Algorithms based on RL
using DNN are popular choices and have demonstrated success. Yet, many DNN-based RL algorithms are
still suffering from the following problems: (i) sample inefficiency, (ii) difficulty in designing reward
functions, (iii) higher potential in local optima even with a good reward function, and (iv) instability and
hard-to-reproducible results [67]. To address the aforementioned problems, the PI proposes B-Morpheus,
a perceptual-motor AIF that learns associative relationships from actions (cause) to sensory changes
(effect). B-Morpheus employs a forward internal model to generate corresponding sensory changes
caused by actions and leverages the model to efficiently learn behaviors through model predictions. The
perceptual-motor learning thus provides the means for B-Morpheus to achieve goal-directed tasks.
AIF is a normative model that explains sentient behavior. This neuroscience theory characterizes
perception, planning, and action as Bayesian inference [68, 69]. Perception in AIF is understood as a



dynamic process of minimizing prediction errors in the brain. The prediction error is defined as a
difference between the information obtained through sensory input and the output of the brain’s internal
model of the external world. According to AIF, the brain attempts to reduce these prediction errors by two
mechanisms. First, it improves a generative model, which is the probabilistic model of the world. Second,
it acts in the world to make sensory inputs match the predictions of the internal model. In AIF, perception
is considered an active and inferential process that aims to minimize prediction errors. The internal
generative and probabilistic models undergo updates based on the discrepancies between observations
from the sensory input and expectations from the models, and further information is actively sought to
refine the internal generative models. This active engagement in perception ensures that organisms can
effectively understand the environment and respond to changes. In AIF, the outside world, which is called
the veridical world and more often called a hidden state, in the active inference context, cannot be
acquired as it is. The veridical world must be mapped to a recognized state through sensors. This mapped
information is then represented in a compressed and abstracted form. Fig. 1 illustrates the overarching
concept of the perception and action cycle in AIF. The observation o, then, should be encoded (or
abstracted) into a latent vector through a neural network (commonly, a Convolutional Neural Network
(CNN) is used as an encoder). The agent should be able to generate a slightly different state caused by an
action. Thus, the extracted features in the form of a latent vector must be able to reconstruct many aspects
of the input. The recognition density, denoted by qθ(s), is a neural mechanism that estimates the hidden
state of the world. To accurately approximate p(s*), this recognition density must be adequately trained.

Fig. 1: Perception and action cycle in the AIF. R is the physical world dynamics. s* is a hidden state. s^ is a recognized state. g(⋅) is a mapping
function from a state to an observation. p(⋅) is a probabilistic density. q(⋅) is an internal model that is expected to be an approximation of p(⋅).

The concept of adjusting a model in response to environmental stimuli in dynamic systems can be traced
back to traditional control theories. The Proportional Integral Derivative (PID) control is a linear and
closed-loop feedback control system [70]. An error value is calculated by the difference between the
model’s output and the system’s actual output. Subsequently, the actions are modulated with respect to the
magnitude of the immediate error, the magnitude of the accumulated errors, and the ratio of the error
changes. A more sophisticated model was introduced by the Markov Decision Process (MDP), which is a
stochastic decision-making process [71]. The MDP relies on the environment, the agent’s action, and the
reward of the action from the environment. The Kalman Filter and its extensions, including the Extended
Kalman Filter (EKF) and Unscented Kalman Filter (UKF), [72, 73] estimate a posterior by updating a
predicted prior to be proportional to the estimation error in the previous step with a Kalman gain. Model
Predictive Control (MPC) uses a model, objectives, and constraints to predict future states and control
actions to achieve desired future outcomes [74]. More recently, RL has demonstrated more promising
results in complex problems. RL is founded upon the Bellman equation [75], which is a process of
identifying the optimal policy through an expected value of the action-value function of each state. Deep
RL employs a DNN to approximate the Q-function [76] for extensive state spaces.
Efforts have been made in the field of RL to mitigate the inherent limitations. The World Model was
introduced to reduce direct interaction with the environment by generating models of the environment
where the agent can simulate actions and future states [77]. PlaNet is a model-based RL learning
approach that constructs a model of the environment similar to theWorld Model. It employs the Recurrent
State Space Model (RSSM) to combine both deterministic and stochastic components of the environment
[78]. This allows PlaNet to deal with more intricate dynamic environments. The descendants of PlaNet
are Dreamer, V2, and V3, enhanced scalability and stability in more complex environments [79–81]. This



lineage of efforts is more refined by Action Perception Divergence (APD) by divergence minimization
[82] and Director via hierarchical planning and multi-level decision-making [83]. As RL methods are
more sophisticated, they start sharing components with AIF [84]. For example, APD embraced the
concept of a unified objective for action and perception by extending representation learning and control.
An agent operating under the auspices of APD tries to minimize the joint divergence between the world
and a target distribution, a methodology analogous to that employed by AIF. Despite these achievements
in RL, the majority of work remains concentrated on relatively simple simulated tasks, including the
inverted pendulum [69], mountain car [84–86], frozen lake [87] problems, and video games (Atari,
Minecraft, or Super Mario) [79–81, 88]. Very recently, DreamerV3 was utilized for quasi-realistic
autonomous driving, but only simple Bird Eye View diagrams were employed [89].
An effort was also made to assess the capacity of AIF in perceptual-motor learning [91]. In this study,
however, they designed a perceptual-motor problem solely for intercepting a moving target to investigate
the role of anticipation in the visual guidance of action. World models of active inference agents were
explored to model human driving behavior via recorded data [90], but the results showed that this
approach is sensitive to input features. Recently, the majority of efforts utilizing AIFs have embraced RL
to train its controller [69, 84, 86, 87, 91–93], thereby perpetuating the inherent issues associated with RL.
B-Morpheus is a deep neural AIF that does not utilize RL frameworks for policy optimization.
Conversely, B-Morpheus employs perceptual-motor learning through motor imagery to conduct
goal-directed tasks. This novel approach mitigates the inherent limitations of RL. Specifically, it
eliminates the need for reward or value functions to be defined. Instead, B-Morpheus will introduce a
desired state or preference [91] to guide action policies. No RL frameworks are required for searching
policy. B-Morpheus is capable of internally simulating its future state resulting from action through an
internal forward model [94–99], which is implemented by generative models. Furthermore, a more
transparent decision-making process is possible with B-Morpheus because actions are selected through a
deterministic process by a gradient descent of the difference between the preference and an expected state.
It is noteworthy that several approaches from disparate disciplines appear to converge towards a similar
idealization with embodied AI, which is a long-term career goal of the PI. This provides compelling
evidence that this CAREER proposal is on the right track.

Research Plan
The proposed research will be driven by three key thrusts. Thrust 1 is to develop a forward internal model
to realize perceptual motor learning. Thrust 2 is to construct an AIF to select the optimal action policy
through the use of covert actions and their causal sensory representations. Thrust 3 validates the
integrated work of Thrusts 1 and 2 with EVs in realistic environments. Any issues identified during the
validation are fed back to refine B-Morpheus, if necessary. See Fig. 2 for the overall research plan.

Fig. 2: Research plan in three thrusts. Thrust 1 is the forward internal model to learn perceptual motor skills. Thrust 2 is action selection through
covert actions and their sensory feedback. Thrust 3 is to validate the proposed perceptual-motor AIF with EVs in realistic environments.



Research Thrust 1: Perceptual-Motor Learning
Introduction: AIF is a unified framework for perception and action. It elucidates the self-organization of
living systems [68, 69] through the Free Energy Principle (FEP) [85, 100–102]. According to FEP, an
agent needs to minimize a surprise to maintain its internal stability. The surprise, however, cannot be
directly accessed, so variational free energy was proposed as a tractable proxy of surprise, which is the
Evidence Lower Bound (ELBO) [103]. Fig. 3 (a) illustrates AIF, which posits that action generates
predictions that align with prior expectations and perceptions, while perception ensures that the internal
model of the world is consistent with observations to maintain internal equilibrium. For a more
comprehensive understanding of the perception and action cycle in AIF, please refer to Fig. 3 (b).

(a) (b)
Fig. 3: Active Inference Framework. (a) AIF extends the variational free energy with self-evidencing. F is the free energy. DKL is the Kullback
Leibler divergence. π represents action policies through which sensations change to maximize evidence. q(st) represents changing beliefs to
minimize divergence. G(⋅) is the expected free energy. Adapted from [104] and modified. (b) Perception and action cycle in the active inference
framework. R is the physical world dynamics. s* is a veridical or hidden state. s^ is a recognized state. g(⋅) is a mapping function from a state to
an observation. p(⋅) is a probabilistic density. q(⋅) is an internal model that is expected to be an approximation of p(⋅).

This perception and action cycle can be realized through the use of a forward internal model [97–99, 105,
106] that predicts future states based on the current state and actions that cause the change. The forward
model in motor control was initially proposed by theoretical and computational studies on cognitive
science. These studies indicate that the central nervous system internally simulates the behaviors of the
motor system in control. This forward model is considered a causal representation of the motor apparatus,
meaning that the next state can be predicted by using the current state and the current motor command. In
this project, the PI will extend the original motor-centric forward model into a world model. A state in the
original forward model means an arm’s position and its joint angles. However, a state in B-Morpheus
refers to the environment, which is a high-dimensional dataset. In a highly automated mobility context, a
state can be defined as a piece of visual information sensed by cameras, LIDARs (Light Detecting And
Ranging), and radars. In contrast to RL frameworks, the forward internal model in B-Morpheus does not
learn a specific task directly. Instead, the proposed perceptual-motor AIF learns how the world changes
when an action is performed by an agent. This generative forward model, which is independent of a
specific task, ensures the versatility of the proposed approach in performing goal-direct tasks.

(i)

(ii)

(iii)

(iv)

(a) (b)
Fig. 4: Image prediction for LFA using CNN-based U-Net. (a) System overview (b) Ground truth (left) vs. predicted (right) images from a model
at the training epoch 330. From the top, predictions after (i) 0.03 sec, (ii) 0.15 sec, (iii) 0.3 sec, and (iv) 0.45 sec later. Adapted from [55].

Preliminary Work: The PI initiated research in the field of image prediction context to mitigate control
latency [55, 107]. A delayed control signal resulting from inference time can be mitigated by modulating
a prediction of a future state to keep stable vehicle control. The latency issue was investigated with the



Adaptive Neural Ensemble Controller (ANEC) [107]. Although ANEC does not directly generate a future
state, the fundamental objective of these efforts is to estimate the future state, which constitutes an
essential component of the forward internal model, a generative model for the AIF. To further investigate
the state estimation caused by an action, the PI proposed to use a Smith predictor [108, 109] and a
forward internal model for vision-based Lane-Following Assist (LFA) [55] (Fig. 4). In this study, the PI
used a U-Net structure [110] based on CNN for a forward internal model implementation. The system
receives the desired state for its task. For LFA, the desired state is the ideal front camera image when the
vehicle is driving at the center of the lane. When a driver applies throttle and steering controls, the system
feeds these control commands to the forward internal model and motor system. The motor system then
modifies the vehicle’s speed and orientation based on the driver’s motor commands. The sensory system
is able to perceive the changes in the state by motor commands and subsequently generates the front
camera image output of the changed state. The forward internal model uses an efference copy of motor
commands and produces the prediction of the next state. A discrepancy between the sensor readings and
the next lane image prediction will be added with state estimation results from the forward internal model
in order to adjust the estimation. The image prediction results from the epoch 330 in the training are
shown in Fig. 4 (b). The prediction results show some blurred artifacts, but the qualitative validation of
the predicted images is promising. Through these preliminary studies, the PI validated the overall research
direction and established a firm foundation for this research thrust.
Approaches: The promising preliminary studies have indicated that the forward internal model can be
implemented as a generative model for perceptual-motor AIF. To ensure the diversity of a future state, the
U-Net architecture will be replaced by a type of conditional Variational Auto Encoder (cVAE) [111–113].
In a VAE, the feature vectors are pre-defined probability distributions (Gaussian distribution is commonly
used), represented by means and variances of the distributions. Therefore, by slightly adjusting the values
of the feature vectors of a cVAE, the decoder of the cVAE can generate an output that is different but
similar to the input conditioned by the agent action and state. The DNN architecture of the cVAE for the
forward model is depicted in Fig. 5 (a), wherein a steering angle value, the current speed, and a time are
provided as inputs to predict with a front camera image [114, 115]. The prediction results are illustrated in
Fig. 5 (b) (c), which depict the generated images at 0.1 sec and 0.3 sec later when the current input and
control signal are given. The predicted images exhibit some degree of blurring when compared to the
ground truth images, yet they retain a considerable number of salient features pertaining to road images.
Indirect validation of the generated images’ quality can be conducted by using them for End-to-End (E2E)
IL to infer control signals. A video demonstration of this approach can be found at [116].

(a)

Current +0.1sec +0.3sec
(b)

Current +0.1sec +0.3sec
(c)

Fig. 5: cVAE model architecture for generating a future road image caused by an action and the current state and prediction results. (a) DNN
architecture for a cVAE model. (b) Ground truth images after 0.1 sec and 0.3 sec. (c) Corresponding predicted images.

The forward internal model based on VAE for perceptual-motor learning should be trained through motor
babbling [19–22]. In contrast to behavior cloning or RL frameworks, the training dataset for
perceptual-motor learning is neither specific to a task nor to expert demonstrations. Conversely,
perceptual-motor skill is to learn the causal representations of the agent's action rather than learning a



specific task. In order to learn the causality, the training data must have an action-babbling type of data,
which means a vehicle must be driven to collect more diverse cases by moving wobbly in a mobility
application. The training dataset must have sufficient cases from which causality can be inferred. In a
preliminary study, the PI collected 744,180 images to train a cVAE model. The performance of steering
angle predictions using the generated image was measured in MSE, which was 3.02°, indicating that the
generated image is suitable for use in steering angle prediction for an IL [115].
Anticipated Results: A forward internal model employing a generative model in the form of a cVAE-like
neural network. If successful, perceptual-motor learning will be prepared for Research Thrust 2.
Success Metrics: The output of the forward internal model should be sufficiently accurate to be used as
input to an E2E IL-based controller as an indirect measure. The driving performance with the generated
images from the forward model will be compared with the ground truth dataset. Driving performance tests
must demonstrate at least 95% of the baseline to be considered a success.
Potential Challenges: VAEs are known for blurry output due to the randomness of the source
information [117, 118]. If the output is not sufficiently clear, the option of using a Generative Adversarial
Network (GAN) [119] or a diffusion models [120, 121] to enhance the image quality will be explored.

Research Thrust 2: Action Selection via Motor Imagery
Introduction: This research thrust aims to develop a method for finding an action policy for AIF. With
this thrust, the highly automated mobility agent can perceive the environment and generate control signals
by integrating generative models with active inference. To investigate how to determine that one action
can be more desirable than others, the core idea of active inference must be explored. The brain is a
predictive machine that predicts future sensory information and infers its causes. To minimize prediction
errors, the brain builds prior knowledge in the form of an internal model representing the world, which
will be investigated through Research Thrust 1. This theory is called the Bayesian brain hypothesis [122],
which formulates perception as a constructive process based on internal generative models [85, 100].
According to the FEP [101], any adaptive system must minimize its free energy by resisting a tendency of
disorder to be stable in its environment. The Free Energy (FE) can be defined as follows.

, where o is an observation, ζ represents a brain state, DKL is the
Kullback Leibler divergence, q(.) is called recognition density, meaning an internal probabilistic density
in the brain about the world, p(s|o) is a posterior probability, s is a state, p(o) is an observation density.
The first term of the equation, , represents the perceptual inference, which can be
improved by a more accurate internal model: . The second term, , which means a
surprise in the sensory observation, can be minimized by acting in the environment. In other words, an
active inference agent can minimize this term by acting on the environment to avoid this surprise:

. Note that action u is not a parameter of the FE, but it can indirectly influence the
observation o. The fundamental principle underlying this approach is that the agent initiates a prediction,
which subsequently guides its actions to facilitate the realization of the prediction. Assuming that the
brain makes an accurate estimation (this can be achieved through Research Thrust), the
active inference component of the FE can be minimized by lowering the surprise, . To achieve
this, actions must be carried out with an expected observation state, which is referred to as preference
[91], in the environment. The preference can be defined as a desired state (“sensorial states that an agent
would like to obtain [91]”).
Preliminary Work: To validate this approach, the PI has applied the perceptual-motor AIF to
lane-keeping and lane-changing tasks. In this preliminary work, the PI assumed that a vehicle is
programmable through a DBW system and equipped with a front-facing camera. In the perceptual-motor
AIF, the lane-keeping task is understood as follows: (i) A desired state is set to keep a vehicle in the
center of a lane. (ii) A stream of images is transmitted to the AIF. (iii) The forward internal model in the
AIF generates sensory feedback resulting from the covert action pool. (iv) The similarity distances



between a generated state and the desired state are calculated. (v) A covert action that minimizes the
minimum distance between sensory feedback and the desired state is selected as the optimal control signal
to be applied. Subsequently, the aforementioned steps are repeated throughout the task. Fig. 8 shows the
steering angle changes the sensory feedback after 0.3 seconds. This figure clearly demonstrates the
appropriate changes based on different steering angles. The next pictures in Fig. 9 depict scenarios of
steering angles over time spans between 0.1 and 0.6 seconds. Fig. 9 (a) illustrates that left-turn steering
causes the vehicle to deviate slightly to the right, and Fig. 9 (b) shows when right-turn steering angles are
applied. In the case of lane-changing, the task is compartmentalized into sub-tasks: (i) Approaching the
lane where the vehicle is going to be located, (ii) crossing a line of a lane, and (iii) keeping the new lane.
The work is still at an early stage, but the results are promising. For a video demonstration of this method,
refer to [116].

(a) (b) (c) (d) (e) (f)
Fig. 8: Sensory feedback by a steering angle for 0.3 sec. (a) Input. (b) 100° left. (c) 70° left. (d) Straight. (e) 70° right. (f) 100° right turn.

(a)

(b)

Input 0.1sec ----------------------------------------------------------------- 0.6 sec
Fig. 9: Various cases of steering angles over time spans between 0.1 and 0.6 seconds. (a) Left-turn steering. (b) Right-turn steering.

To further validate the action selection in driving situations, the PI also employed CARLA [123], an
open-source autonomous driving simulator, to apply the proposed method to LFA. For a video
demonstration, refer to [124]. An IL agent was used as a baseline to compare driving performance. In
these preliminary experiments, agents based on perceptual-motor AIF demonstrated superior performance
in terms of adaptability, generalization, and data efficiency compared to the IL baseline and a subset of
CoRL2017 benchmarks [125, 126] with IL and RL methods [127].
Approaches: In conventional AIFs, an internal model referred to as a recognition density is expected to
be capable of capturing how the environment changes as a result of an action. The construction of a
precise recognition density is challenging, given that the environment is comprised of high-dimensional
signals. In this project, however, the PI proposes to use a forward internal model trained by
perceptual-motor learning instead of capturing the recognition density of the world. This approach will
make it much easier for a generative model to be trained even with the same high-dimensional signals,
such as images from cameras and 3D point clouds from LIDARs. The generative model will be trained to
learn how to make small but meaningful changes caused by immediate action rather than capturing the
environment. The identification of an appropriate action to achieve a desired state from the current state
can be achieved through the use of an inverse model in control theory or robotics [105, 106, 128]. The
training of an inverse model is challenging due to the virtually infinite number of state transitions that
must be learned. The PI proposes an alternative approach to the identification of an inverse model. The
proposed method employs the simulation theory of cognitive function [121–123], which postulates three
components: (i) simulation of action, (ii) simulation of perception, and (iii) anticipation. According to this
theory, the pre-motor cortex in the frontal lobes of the brain can be activated to perform without any overt
movement. The brain is also capable of generating perceptual activity in the absence of external stimuli.



Imagining to perceive something is essentially the same as actual perception. Fig. 6 illustrates the process
of internalization of action and perception.

(a) (b) (c)
Fig. 6: Internal simulation theory. (a) Sensorimotor loop. Σ is sensory input from an environment. σ is an internal representation of the sensory
input. a is an internal representation of an action. A is an actual motor output. The loop of Σ→σ→a→A is repeated as new sensor input comes.
(b) As the sensorimotor loop repeats, action feedback starts being internalized, and the sensory input caused by the action starts being
internalized. (c) Simulated perception after internalization is established [129].

The proposed approach involves the use of simulated perception caused by a covert action in optimal
action policy to achieve goal-directed tasks. This idea is similar to the Dreamer series [79–81, 83], but
they employed a model-based RL framework, which necessitates the definition of a model and
reward/value functions. In contrast, B-Morpheus utilizes cover action and simulated sensorial feedback.
Since the actions and their sensorial consequences are covert, they can be internally simulated as much as
possible without concerns for physical consequences. As long as a preferred sensorial consequence can be
defined, goal-directed tasks can be accomplished through nested covert actions and their simulated
sensorial consequences. In practice, the selection of an action is based on the similarity distance between
the sensorial consequences and a desired state. Fig. 7 illustrates the action selection process in
B-Morpheus that can be understood as a minimization of the Expected Free Energy (EFE),

, where π is an action policy [68, 102] in AIF. Structural SIMilarity
(SSIM) [130] is used to measure the distance between a desired state and a state:

, where x and y are signals to be compared, l(.) is luminance, c(.) is
contrast, and s(.) is structure. α > 0, β > 0, and ɤ > 0. The PI also defines STRC (x, y), which is s(x, y) to
consider only structure without using luminance and contrast. At present, the focus is on immediate action
in a deterministic policy. However, the PI will also significantly expand the action selection method
through (i) the gradient descent of the similarities to achieve further goals and (ii) hierarchical planning.

Fig. 7: Action selection through sensorial consequences from simulated actions.

Anticipated Results: Optimal action policy for conducting given goal-directed tasks.
Success Metrics: If an action policy can generate action sequences up to 600 ms in the future, that will be
considered successful. Action sequences will be tested in driving behaviors such as lane keeping and lane
changing. The results will be compared with multiple behavior cloning approaches in terms of driving
performance. ±5% in the performance comparison will be considered successful.
Potential Challenges: SSIM and STRC may not be sufficient to measure similarity distances. Also,
generating a longer action sequence for goal-directed behavior is challenging. Peak Signal-to-Noise Ratio
(PSNR) [131, 132] can be an alternative metric for similarity comparison. The challenges in generating a
longer but stable simulated action and perception loop can be explored through hierarchical planning [81].

Research Thrust 3: Validation in the RealWorld and Refinement B-Morpheus
Introduction: This thrust is to validate B-Morpheus with real vehicles in the real world and provide
feedback on any issues to refine the proposed perceptual-motor AIF. The algorithms developed and tested



in a simulated environment must be tested in a real vehicle to ensure validity. It should be noted that the
PI does not aim to address the Simulation-to-Reality (Sim2Real) [133] problem itself. Instead, to ensure
its validity, the PI proposes to test the perceptual-motor AIF with real vehicles in the real world.
B-Morpheus will be developed through Thrusts 1 and 2. Yet, its validity in real-world performance must
be explored and investigated. Using a real vehicle with an immature algorithm can imply safety concerns
for researchers and students. So, one popular choice is to use a small model car. There are numerous
efforts to design a model car that is small but can be a viable option for research. Following are some of
them: MIT RACECAR [134], F1TENTH [135], MuSHR [136], Go-CHART [137], Duckiebots of
Duckietown [138], Donkey Car [139], Amazon DeepRacer [140], NVIDIA Jetson [141] Nano-based
two-wheel differential driving robots, and JetBots [142]. However, two significant limitations of these
vehicular platforms have been identified: (i) The lack of reproducibility owing to heavy craftsmanship
requirements due to extensive modifications of the vehicular platform (removal and replacement of
motors, installation of a new Electronic Speed Controller (ESC), custom Printed Circuit Boards (PCBs),
etc. (ii) The restricted onboard processing capabilities due to the platform size.
Preliminary Results: For the first and second phases, the PI has been developing the 1/4th scaled EV
with a software suite to support research and education for highly automated mobility. This model EV
vehicle is named the B-ROVER (Fig. 10 (a)), utilizing Pixhawk PX4 [143] and PX4-Autopilot [144], an
open standard for aerial, underwater, and ground vehicles. The new design ensures reproducibility and
overcomes the restriction of onboard computing. The PI has also been developing an open-source project,
OSCAR [26], a full-stack software package with two simulated vehicles to support this platform. To
validate the proposed design's capability, E2E IL utilizing a DNN was tested (Fig. 10 (b) and (c)). For the
third phase, the PI has been working to integrate the Sygnal DBW [28] that is designed to be used in the
Automotive Safety Integrity Level (ASIL)-D [145] with the Kia Soul EV. The initial setup is shown in
[29].

(a) (b) (c)
Fig. 10: B-ROVER design and preliminary DNN-based controller test. (a) Driving controller with a custom-designed housing (b) MSE loss
in training (c) Steering predictions. The plot indicates the DNN is well-trained, showing the predictions are close to the ground truth values

Approaches: The PI proposes using three phases of the vehicles to provide the complete test and
validation platform: (i) simulated vehicles, (ii) 1/4th scaled EVs, and (iii) full-size real EVs. For the first
phase, the PI has been developing OSCAR [26], a full-stack software package based on Robot Operating
System (ROS) [146] and Gazebo [147] to support DNN-based E2E IL, that has two simulated vehicles:
the Ford Fusion and the Polaris Ranger. The second phase is an affordable and accessible mesoscale EV
with a DBW. To address the issues of reproducibility of the design and onboard processing capability
restriction in the existing platforms, the PI aims to build a 1/4th scaled EV without extensive modification
and provide full-stack software for AI-based perception, planning, and control. The third phase is to use a
full-size real vehicle in a realistic environment. The PI has two full-size EVs with DBWs and a sensor
suite. These EVs will be utilized to assess the efficacy of B-Morpheus at MCity [148], a world-class
facility for testing the performance and safety of connected and automated vehicles at the UM Ann Arbor
campus. The PI has access to Mcity as a faculty member in the UM system. Through the
Hardware-In-the-Loop (HIL) tests in realistic environments, B-Morpheus will be more validated as a
theory and further refined as an applicable framework for highly automated mobility systems in the real
world. In addition, a Chrysler Pacifica Hybrid with Dataspeed DBW [32] is ready to be used (Fig. 11).



(a) (b)
Fig. 11: (a) Kia Soul EV with a Sygnal DBW system and (b) Chrysler Pacifica Hybrid with a sensor suite. The DBW kit includes brake, throttle,
steer, and shift-by-wire controller modules. It also has the following features for research and development for autonomous driving: driver
override by pressing the brake, throttle, shifting, or turning the steering wheel. The sensor suite includes the following components: one
high-resolution 64-channel LIDAR, two 32-channel LIDAR, four RGB cameras, and one GPS antenna

Anticipated Results: (i) Two simulated vehicles in ROS. (ii) programmable 1/4th scaled EVs (iii) A
full-stack software package supporting DNN-based controllers (iv) Datasets of testing and validating
B-Morpheus with real vehicles in realistic dynamic environments. These will provide valuable insights
into potential issues in the proposed approaches. These results will refine perceptual-motor AIF for
real-world applications.
Success Metrics: A performance metric must achieve a level of at least 90% in a real-world environment
with real vehicles to be considered a success. This is due to the challenges inherent in transferring data
from a simulated environment to the real world.
Potential Challenges: Latency in perception and control can be a potential challenge. Performance
degradation due to perception latency can be addressed by delay compensation through future state
estimation and modulation of actions [33, 34, 107, 149].

Integrated Education Plan
The PI is to integrate his research thrusts with education and outreach activities. There are two
educational thrusts to propel the integration of research and education, where underrepresented groups,
including African American high school students in Detroit Metropolitan areas and undergraduate and
graduate women in STEM, will be prioritized. The PI will also apply for Dearborn Discovery Core [150,
151] with new undergraduate courses developed through this proposal. The two key thrusts in education
and outreach are as follows: (i) Project-Based Learning (PBL): Faculty guides students on projects and
helps them to apply classroom learning to current real-world challenges. UM-Dearborn has been a strong
supporter of PBL for its colleges. Every year, the College of Engineering and Computer Science (CECS)
exhibits exemplary work on PBL through faculty members. Hands-on experience is a critical component
of PBL. When studying engineering, it is crucial to begin practicing from the outset and continue doing so
throughout one’s academic career. Learning is facilitated by body engagement, according to research on
embodied cognition [152, 153]. The PI hypothesizes that STEM education should be more akin to musical
instrument training. Charles Kettering once said, “If we taught music the way we try to teach engineering,
in an unbroken four-year course, we could end up with all theory and no music. When we study music, we
start to practice from the beginning, and we practice for the entire time” [154]. (ii) Preparation for
Lifelong Learning: STEM learning must be a self-initiated education, which is referred to as lifelong
learning. The world is changing at near-lightning speed. In STEM areas, it is even faster. Scientific facts
may remain consistent for longer periods, yet the ways of learning and utilizing them have undergone
significant changes. In the near future, it is likely that there will no longer be a need to write entry-level
code due to the advent of generative AI, such as ChatGPT [155], Gemini [156], and LLaMA [157].

Education Thrust 1: Project-Based Learning through Hands-on Experience
Project-Based Learning (PBL): PBL promotes critical thinking, teamwork, and practical skills to solve
real-world problems by providing students with the opportunity to work on a project over several weeks
during a semester. Faculty guides students on these projects, helping them to apply classroom learning to
current real-world challenges. However, due to the additional workload and commitment to time and
effort required for a successful project experience, it is challenging to implement PBL for existing
courses, even if there is a strong institutional initiative. Yet, the PI believes the topics of STEM education
must be connected to real-world applications and has a long history of working on PBL, aiming at



introducing the core concept of PBL, which is learning by doing, to undergraduate and graduate students.
Almost all courses taught by the PI have final project components, including ECE-450/650 Mobile
Robotics, CE-491 App Development for Mobile Devices, CE-426/626 Real-Time Embedded Systems at
Kettering University and ECE-3641 Robotic Manipulation, ECE-5831 Pattern Recognition and Neural
Networks at the UM-Dearborn. The PI’s home institute has been a strong supporter of PBL. CECS has
held an annual PBL showcase to publicize the work. The PI participated in the 2023 PBL showcase with
course projects [158]. In 2023, CECS sent a group of faculty to the PBL workshop hosted by the Center
for PBL at Worcester Polytechnic Institute (WPI) [159]. The PI volunteered to attend the 2.5-day
intensive in-person workshop at WPI. The proposed research thrusts will be integrated with the PBL
efforts. The machine intelligence of causality and adaptability will be incorporated into potential student
project topics in ECE-5831 Pattern Recognition and Neural Networks and ECE-505 Introduction to
Embedded Systems for graduate students, and ECE-3641 Robotic Manipulation, ECE-434 Introduction
to Machine Learning, and ECE-4641 Mobile Robotics for undergraduate students. If successful, the PI
will seek to significantly expand the PBL efforts to other undergraduate and graduate courses and will
also engage more actively with the institutional efforts on PBL.

(a) (b) (c)
Fig. 12: Computer engineering summer camp. (a) Robot programming and smartphone app for controlling the robot through Bluetooth. (b)
Programming example code. (c) A group picture after the camp.

Hands-on Experience: STEM education necessitates hands-on experiential training as most STEM fields
assume that theoretical knowledge will be applied to solve real-world problems. In this context, hands-on
educational modules will be developed as part of this proposal. STEM education should be more akin to
musical instrument training. While theoretical knowledge is essential for musicians to play instruments, it
is not sufficient. Musicians must engage in hands-on practice with the instrument. Similarly, hands-on
experiences are vital through PBL. Likewise, hands-on experiences are essential through PBL. It is often
the case that established courses in higher education lack systematic coverage of robotic hardware and
software. It is, therefore, evident that hands-on experience constitutes an essential component of PBL,
inclusive teaching [160], and active learning in the flipped classroom [161]. The laboratory materials
currently utilized in existing courses will be augmented and further refined to enhance the hands-on
learning experience. The courses include but are not limited to ECE-3641 Robotic Manipulation,
ECE-4641 Mobile Robotics, ECE-505 Introduction to Embedded Systems, and ECE-5831 Pattern
Recognition and Neural Networks. In addition, the PI will organize and host a week-long summer
engineering camp for 20 high school students. From 2011 to 2019, the PI hosted two week-long
pre-college summer camps at Kettering University, Flint, Michigan. Curriculum materials developed by
the PI include robotics, computer engineering, and smartphone programming [162]. A small-scale mobile
robot was designed and built with DC motors, and students wrote a mobile app to control the robot
through Bluetooth connections. According to a post-program survey in the study [162], more than 90% of
participants showed satisfied or positive responses. Fig. 12 shows pictures from the computer engineering
summer camp prior to the onset of the COVID-19 pandemic. The PI will reinstate these efforts by
expanding outreach opportunities to Detroit Metropolitan areas and showcase the work at the Michigan
Pre-College & Youth Outreach Conference [163]. After validating algorithms from the Research Thrusts
in a simulated environment, 1/4th scale EVs and two full-size EVs that the PI owned will be used to
provide students with hands-on experience. Additionally, they will be utilized in an NSF REU Site



program, which will be integrated into the initiative to develop hands-on educational modules.

Education Thrust 2: Preparation of Lifelong Learning
To facilitate lifelong learning, it is essential that educational modules be made available beyond the
conclusion of this project. Furthermore, the modules must be straightforward to use, requiring minimal
cost and effort. The PI will provide the design of a mesoscale EV hardware platform along with
open-source software that can be built at a low cost and utilized for robust intelligence studies on a
smaller scale. The PI has a strong record in designing and implementing a ride-on EV [23–25], which can
be controlled by high-level signals on the ROS, an open-source robotics middleware suite. These
educational modules will include documents, videos, and codes. The educational materials will be created
and managed using online documentation tools (ReadTheDocs [164] and GitBook [165]), ensuring that
they remain up-to-date. Instruction videos will be posted and shared via YouTube, and code will be shared
via GitHub [166], an online code repository management tool for broader dissemination. The PI will
focus on the reproducibility of the design to ensure the educational materials can be used for lifelong
learning. A 1/4th scaled model EV with a DBW based on Pixhawk [143] and PX4-Autopilot [144],
B-ROVER [25], will be used as a standard hardware platform for lifelong learning. A full-stack software
package to support this hardware, OSCAR [167], will be further developed to support perceptual-motor
learning in addition to DNN-based E2E controllers for autonomous driving.

Assessments and Evaluation Plan
To improve the integration of the proposed research and education, an assessment of educational thrusts
will be conducted. The PI will collect course evaluation results from the courses in which PBL materials
were introduced and assess their effectiveness. Additional survey-type evaluation metrics will be
developed. The PI will also work with the Diversity, Equity & Inclusion (DEI) office to improve
engagement levels of underrepresented students. The results will be disseminated through ASEE annual
conferences so that the PI can share its efforts with broader communities.

Broader Impacts
Scientific/Technological Impact: The proposed project, B-Morpheus, will contribute to a more in-depth
scientific understanding of computational principles of general intelligence and ensure robustness in
intelligent systems for highly automated mobility. This project will ensure the robustness and adaptability
of highly automated mobility, thereby saving more human lives and reducing greenhouse gases through
better perception and more efficient control systems. The principles of intelligence and the novel AI
method will also provide new knowledge and tools to educate future engineers and researchers.
Education: The proposed education plan will provide students with hands-on experience at K-12 and
undergraduate levels and will facilitate new research opportunities for undergraduate and graduate
students. In addition to the proposed novel research, this proposal will result in the development of one
hardware platform, B-ROVER, which is a 1/4th scale EV base with a custom-designed DBW system
[23–25], and one full-stack software package, OSCAR supporting DNN-based E2E IL [26] will be
developed. They will be utilized to introduce brain-inspired machine learning for automated mobility to
K-12 and undergraduate students and test students’ ideas on the platform without concern for safety
issues. Additionally, the PI will be a facilitator of campus-wide PBL efforts and will deploy the PBL
components to undergraduate and graduate courses. The PI also will develop and host a week-long
summer engineering camp for twenty high school students in the Detroit area. Detroit, Michigan, is
known as the automotive headquarters, and 77.9% of the residents are African American [27]. In
Michigan, 26 automotive-related manufacturers, including the Big Three (General Motors, Ford Motor
Company, and Stellantis), have headquarters or technology centers, and they employ more than 100,000
engineers [168]. For lifelong learning for undergraduate and graduate students, several media types (text,
pictures, videos) of educational materials, including hardware and software design and source code for the
proposed research and education, will be open-sourced.



Integration of Research and Education: The PI will transform novel findings, insights, and datasets
from the proposed research into course modules in various disciplines, including brain, cognitive,
computer science/engineering, CV, ML, and AI. The students taught by the modules will be inspired to
find new research opportunities. The interdisciplinary nature of the proposed research and education will
spark interest in STEM [169, 170], particularly among students not initially drawn to STEM, helping
them perceive connections between disciplines and identify potential areas of interest in the studies where
they can derive enjoyment from learning.
Effectiveness of Evaluation and Assessment Plan: The proposed projects will be evaluated and
assessed in both qualitative and quantitative terms, with a clear metric table to ensure their effectiveness.
This will entail the following: (i) surveys of at least 90% of participants to measure overall performance;
(ii) structured interviews with at least five participants to review; and (iii) dissemination of results through
at least one publication in an educational conference or journal per year.

Project Timeline

Tasks CAREER Grant Years
Beyond
CAREER

1 2 3 4 5 6 ~ 10 Years
Research

1
Generative models to realize perceptual-motor learning

Design and development of forward and Inverse model
Test and validate in a physics-simulated environment

2
Perceptual-motor AIF to select optimal action policies through covert actions

Develop computational models of simulation theory
Integrate perceptual-motor learning to AIF

3 Validation of perceptual-motor AIF in realistic environments
Test and validate in robots and vehicles

Education

1

Project-Based Learning through Hands-on Experience
Design and Development of PBL modules for courses
PBL workshop for UM-Dearborn
REU Site proposal and implementation

2
Lifelong Learning

Open-source hardware and software packages
Online documentation and video instructions

Prior NSF Support
NSF Major Research Instrument Award #2214830: (PI, $244,610.00, 9/01/2022 - 8/31/2025), “MRI:
Acquisition of Autonomous Plug-In Hybrid Vehicle Platform for Multidisciplinary Research and
Education at the University of Michigan-Dearborn.” This project aims to acquire a high-performance
autonomous EV platform with a sensor suite to advance fundamental science and engineering research
and education. Broader Impacts: The platform is crucial instrumentation to significantly enhance
interdisciplinary research and education at UM-Dearborn in the activities, including embodied cognitive
vehicle, in-vehicular network security, energy consumption, environmental perception, cybersecurity, and
driver behavior analyses in electric and advanced mobilities. Intellectual Merits: The proposed platform
will enable collaborative research in a realistic environment with a full-scale programmable vehicle in the
aforementioned emerging research areas. Results: The procurement process was completed on 7/20/2023,
and the equipment was delivered on 1/19/2024. Publications: Kim, D., Khalil, A., Nam, H., and Kwon, J.,
"OPEMI: Online Performance Evaluation Metrics Index for Deep Learning-Based Autonomous Vehicles"
IEEE Access, v.11, 2023 https://doi.org/10.1109/ACCESS.2023.3246104.


